Sum of the Given Series (2)

Calculus Level 2

1 1 × 2 + 1 2 × 3 + 1 3 × 4 + 1 4 × 5 + = ? \large\frac1{1\times2}+\frac1{2\times3}+\frac1{3\times4}+\frac1{4\times5}+\cdots=\, ?


  • See a similar and harder question here .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki.- Telescoping series

n = 1 1 n ( n + 1 ) = n = 1 ( 1 n 1 n + 1 ) = 1 1 1 2 + 1 2 1 3 + 1 3 1 4 + = 1 \displaystyle \sum_{n = 1}^{\infty} \frac{1}{n(n + 1)} = \sum_{n = 1}^{\infty} (\frac{1}{n} - \frac{1}{n + 1}) = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \ldots = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...