Sum of the Given Series (3)

Calculus Level 3

1 1 × 2 × 3 + 1 2 × 3 × 4 + 1 3 × 4 × 5 + 1 4 × 5 × 6 + = ? \large\frac1{1\times2\times3}+\frac1{2\times3\times4}+\frac1{3\times4\times5}+\frac1{4\times5\times6}+\cdots=\, ?


Try a similar and easier problem here .


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Brian Lie
Mar 10, 2018

Relevant wiki: Telescoping Series - Sum

By virtue of 1 n ( n + 1 ) ( n + 2 ) = 1 2 ( 1 n ( n + 1 ) 1 ( n + 1 ) ( n + 2 ) ) , \frac1{n(n+1)(n+2)}=\frac12\left(\frac1{n(n+1)}-\frac1{(n+1)(n+2)}\right), we have S = n = 1 1 n ( n + 1 ) ( n + 2 ) = 1 2 n = 1 ( 1 n ( n + 1 ) 1 ( n + 1 ) ( n + 2 ) ) = 1 2 ( 1 1 × 2 1 2 × 3 + 1 2 × 3 1 3 × 4 + ) = 1 4 = 0.25 . \begin{aligned} S&=\sum_{n=1}^\infty\frac1{n(n+1)(n+2)} \\&=\frac12\sum_{n=1}^\infty\left(\frac1{n(n+1)}-\frac1{(n+1)(n+2)}\right) \\&=\frac 12\left (\frac 1{1\times2}-\frac 1{2\times3}+\frac1{2\times3}-\frac1{3\times4}+\cdots\right ) \\&=\frac14=\boxed{0.25}. \end{aligned}

Chew-Seong Cheong
Mar 10, 2018

S = 1 1 × 2 × 3 + 1 2 × 3 × 4 + 1 3 × 4 × 5 + = k = 1 1 k ( k + 1 ) ( k + 2 ) = k = 1 1 2 ( 1 k 2 k + 1 + 1 k + 2 ) = 1 2 ( k = 1 ( 1 k 1 k + 1 ) k = 1 ( 1 k + 1 1 k + 2 ) ) = 1 2 ( 1 1 1 2 ) = 1 4 = 0.25 \begin{aligned} S & = \frac 1{1 \times 2 \times 3} + \frac 1{2 \times 3 \times 4} + \frac 1{3 \times 4 \times 5} + \cdots \\ & = \sum_{k=1}^\infty \frac 1{k(k+1)(k+2)} \\ & = \sum_{k=1}^\infty \frac 12 \left(\frac 1k - \frac 2{k+1} + \frac 1{k+2}\right) \\ & = \frac 12\left(\sum_{k=1}^\infty \left(\frac 1k - \frac 1{k+1}\right) - \sum_{k=1}^\infty \left(\frac 1{k+1} - \frac 1{k+2}\right) \right) \\ & = \frac 12\left(\frac 11 - \frac 12 \right) \\ & = \frac 14 = \boxed{0.25} \end{aligned}

Steven Yuan
Mar 10, 2018

We have

1 ( n 1 ) ( n ) ( n + 1 ) = 1 n ( n 2 1 ) = n n 2 1 1 n = n ( n 1 ) ( n + 1 ) 1 n = 1 2 ( 1 n 1 + 1 n + 1 ) 1 n = 1 2 ( ( 1 n 1 1 n ) + ( 1 n + 1 1 n ) ) . \begin{aligned} \dfrac{1}{(n - 1)(n)(n + 1)} &= \dfrac{1}{n(n^2 - 1)} \\ &= \dfrac{n}{n^2 - 1} - \dfrac{1}{n} \\ &= \dfrac{n}{(n - 1)(n + 1)} - \dfrac{1}{n} \\ &= \dfrac{1}{2} \left ( \dfrac{1}{n - 1} + \dfrac{1}{n + 1} \right ) - \dfrac{1}{n} \\ &= \dfrac{1}{2} \left ( \left ( \dfrac{1}{n - 1} - \dfrac{1}{n} \right ) + \left( \dfrac{1}{n + 1} - \dfrac{1}{n} \right ) \right ). \\ \end{aligned}

Thus,

n = 2 1 ( n 1 ) ( n ) ( n + 1 ) = n = 2 ( 1 2 ( ( 1 n 1 1 n ) + ( 1 n + 1 1 n ) ) ) = 1 2 ( 1 1 2 ) = 1 4 . \begin{aligned} \sum_{n = 2}^{\infty} \dfrac{1}{(n - 1)(n)(n + 1)} &= \sum_{n = 2}^{\infty} \left ( \dfrac{1}{2} \left ( \left ( \dfrac{1}{n - 1} - \dfrac{1}{n} \right ) + \left( \dfrac{1}{n + 1} - \dfrac{1}{n} \right ) \right ) \right ) \\ &= \dfrac{1}{2} \left (1 - \dfrac{1}{2} \right ) \\ &= \boxed{\dfrac{1}{4}}. \end{aligned}

Rab Gani
Mar 10, 2018

For any positive integer n, 1/[(n).(n+1).(n+2)] = (1/2)[1/(n)(n+1) - 1/(n+1)(n+2)]. So 1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5) + ....= (1/2)[1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + 1/(3.4) - 1/(4.5) + ........] = (1/2)[1/(1.2)] = 0.25

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...