Sum of the Given Series (5)

Calculus Level 4

n = 1 1 n 2 ( n + 1 ) 2 ( n + 2 ) 2 = π A B C D \large\sum_{n=1}^\infty\frac 1{n^2(n+1)^2(n+2)^2}=\frac {\pi^A}B-\frac CD where A , B , C A,B,C and D D are positive integers, with C , D C,D coprime. Find A + B + C + D . A+B+C+D.


Try this problem first: Sum of the Given Series (4) .


The answer is 61.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
May 21, 2018

We have P = 1 n 2 ( n + 1 ) 2 ( n + 2 ) 2 = ( 1 n ( n + 1 ) ( n + 2 ) ) 2 P = ( ( 1 n 1 n + 1 ) 1 n + 2 ) 2 = ( 1 n ( n + 2 ) 1 ( n + 1 ) ( n + 2 ) ) 2 P = ( 1 2 n 1 2 ( n + 2 ) 1 n + 1 + 1 n + 2 ) 2 = ( 1 2 n 1 n + 1 + 1 2 ( n + 2 ) ) 2 \begin{aligned} P & =\dfrac{1}{n^2(n+1)^2(n+2)^2} = \left(\dfrac{1}{n(n+1)(n+2)}\right)^2 \\ P & = \left(\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)\dfrac{1}{n+2}\right)^2 =\left(\dfrac{1}{n(n+2)} -\dfrac{1}{(n+1)(n+2)}\right)^2 \\ P& = \left(\dfrac{1}{2n} -\dfrac{1}{2(n+2)} -\dfrac{1}{n+1} +\dfrac{1}{n+2}\right)^2 =\left(\dfrac{1}{2n} -\dfrac{1}{n+1} +\dfrac{1}{2(n+2)}\right)^2 \end{aligned} Now solving algebrically we find P = 1 4 n 2 ( 2 2 n ( n + 1 ) ) + 1 ( n + 1 ) 2 + 2 ( 1 2 n 1 n + 1 ) 1 2 ( n + 2 ) + 1 4 ( n + 2 ) 2 P = ( 1 4 n 2 + 1 ( n + 1 ) 2 + 1 4 ( n + 2 ) 2 ) ( 1 n 1 n + 1 ) + 1 4 ( 1 n 1 n + 2 ) ( 1 n + 1 1 n + 2 ) P = n = 1 [ ( 1 4 n 2 + 1 ( n + 1 ) 2 + 1 4 ( n + 2 ) 2 ) 3 4 n + 3 4 ( n + 2 ) ] P = π 2 4.6 + π 2 6 1 + 1 4 ( π 2 6 1 1 4 ) 9 8 P = π 2 4 39 16 \begin{aligned} P & = \dfrac{1}{4n^2} -\left(\dfrac{2}{2n(n+1)}\right)+\dfrac{1}{(n+1)^2}+2\left(\dfrac{1}{2n} -\dfrac{1}{n+1}\right)\dfrac{1}{2(n+2)}+\dfrac{1}{4(n+2)^2} \\ P& =\left( \dfrac{1}{4n^2} +\dfrac{1}{(n+1)^2} +\dfrac{1}{4(n+2)^2}\right)-\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{n} -\dfrac{1}{n+2}\right)-\left(\dfrac{1}{n+1} -\dfrac{1}{n+2}\right) \\ P& = \displaystyle\sum_{n=1}^{\infty}\left[\left({\color{#3D99F6}\dfrac{1}{4n^2}+\dfrac{1}{(n+1)^2} +\dfrac{1}{4(n+2)^2}}\right) -\dfrac{3}{4n} +\dfrac{3}{4(n+2)} \right]\\ P & = {\color{#3D99F6}\dfrac{\pi^2}{4.6} +\dfrac{\pi^2}{6}-1+\dfrac{1}{4}\left(\dfrac{\pi^2}{6} -1-\dfrac{1}{4}\right)} -\dfrac{9}{8} \\ P & = \boxed{\dfrac{\pi^2}{4} -\dfrac{39}{16}} \end{aligned}

Hence , A + B + C + D = 61 A+B+C+D =\boxed{61} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...