where and are positive integers, with coprime. Find
Try this problem first: Sum of the Given Series (4) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We have P P P = n 2 ( n + 1 ) 2 ( n + 2 ) 2 1 = ( n ( n + 1 ) ( n + 2 ) 1 ) 2 = ( ( n 1 − n + 1 1 ) n + 2 1 ) 2 = ( n ( n + 2 ) 1 − ( n + 1 ) ( n + 2 ) 1 ) 2 = ( 2 n 1 − 2 ( n + 2 ) 1 − n + 1 1 + n + 2 1 ) 2 = ( 2 n 1 − n + 1 1 + 2 ( n + 2 ) 1 ) 2 Now solving algebrically we find P P P P P = 4 n 2 1 − ( 2 n ( n + 1 ) 2 ) + ( n + 1 ) 2 1 + 2 ( 2 n 1 − n + 1 1 ) 2 ( n + 2 ) 1 + 4 ( n + 2 ) 2 1 = ( 4 n 2 1 + ( n + 1 ) 2 1 + 4 ( n + 2 ) 2 1 ) − ( n 1 − n + 1 1 ) + 4 1 ( n 1 − n + 2 1 ) − ( n + 1 1 − n + 2 1 ) = n = 1 ∑ ∞ [ ( 4 n 2 1 + ( n + 1 ) 2 1 + 4 ( n + 2 ) 2 1 ) − 4 n 3 + 4 ( n + 2 ) 3 ] = 4 . 6 π 2 + 6 π 2 − 1 + 4 1 ( 6 π 2 − 1 − 4 1 ) − 8 9 = 4 π 2 − 1 6 3 9
Hence , A + B + C + D = 6 1 .