Sum of the Given Series (7)

Calculus Level 3

1 3 1 ! + 2 3 2 ! + 3 3 3 ! + = ? \large\frac {1^3}{1!}+\frac {2^3}{2!}+\frac {3^3}{3!}+\cdots=\, ?


Try this problem first: Sum of the Given Series (6) .


The answer is 13.5914.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
May 23, 2018

n = 1 n 3 n ! = n = 1 n 2 1 + 1 ( n 1 ) ! = n = 1 ( n + 1 ( n 2 ) ! + 1 ( n 1 ) ! ) = n = 1 ( 1 ( n 3 ) ! + 2 ( n 2 ) ! + 1 ( n 2 ) ! + 1 ( n 1 ) ! ) = 5 e 13.5914 \displaystyle\sum_{n=1}^{\infty}\frac {n^3}{n!} = \displaystyle\sum_{n=1}^{\infty}\frac {n^2-1+1}{(n-1)!} =\displaystyle\sum_{n=1}^{\infty}\left (\frac {n+1}{(n-2)!} + \frac {1}{(n-1)!}\right) \\ =\displaystyle\sum_{n=1}^{\infty}\left (\frac{1}{(n-3)!} + \frac{2}{(n-2)!}+ \frac {1}{(n-2)!} + \frac {1}{(n-1)!}\right) = 5e\approx \boxed {13.5914}

Alternative approach is using Bell number .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...