Sum of three squares

Algebra Level 2

If x y = 3 xy=3 , x z = 4 xz=4 and y z = 6 yz=6 , find x 2 + y 2 + z 2 x^2+y^2+z^2


The answer is 14.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

We have that x z × y z x y = 4 × 6 3 z 2 = 8 z = ± 2 2 \dfrac{xz \times yz}{xy} = \dfrac{4 \times 6}{3} \Longrightarrow z^{2} = 8 \Longrightarrow z = \pm 2\sqrt{2} .

Then x = 4 z = ± 2 x = \dfrac{4}{z} = \pm \sqrt{2} and y = 6 z = ± 3 2 = ± 3 2 2 y = \dfrac{6}{z} = \pm \dfrac{3}{\sqrt{2}} = \pm \dfrac{3\sqrt{2}}{2} .

Now either all of x , y , z x,y,z are positive or all or negative, but in either case

x 2 + y 2 + z 2 = 2 + 9 2 + 8 = 29 2 = 14.5 x^{2} + y^{2} + z^{2} = 2 + \dfrac{9}{2} + 8 = \dfrac{29}{2} = \boxed{14.5} .

x y = 3 xy=3 ( 1 ) (1)

x z = 4 xz=4 ( 2 ) (2)

y z = 6 yz=6 ( 3 ) (3)

( 1 ) (1) × \times ( 2 ) (2) × \times ( 3 ) (3) = ( x y ) ( x z ) ( y z ) = 3 ( 4 ) ( 6 ) = 72 = (xy)(xz)(yz) = 3(4)(6) = 72 \implies x 2 y 2 z 2 = 72 \boxed{\color{#D61F06}x^2y^2z^2 = 72}

Solving for x 2 x^2 , y 2 y^2 and z 2 z^2

x 2 y 2 z 2 ( x y ) 2 = 72 3 2 \dfrac{x^2y^2z^2}{(xy)^2} = \dfrac{72}{3^2} \implies z 2 = 8 \boxed{z^2 = 8}

x 2 y 2 z 2 ( x z ) 2 = 72 4 2 \dfrac{x^2y^2z^2}{(xz)^2} = \dfrac{72}{4^2} \implies y 2 = 4.5 \boxed{y^2 = 4.5}

x 2 y 2 z 2 ( y z ) 2 = 72 6 2 \dfrac{x^2y^2z^2}{(yz)^2} = \dfrac{72}{6^2} \implies x 2 = 2 \boxed{x^2 = 2}

Adding x 2 x^2 , y 2 y^2 and z 2 z^2

x 2 x^2 + + y 2 y^2 + + z 2 z^2 = 8 + 4.5 + 2 = = 8 + 4.5 + 2 = 14.5 \boxed{\color{#3D99F6}\large14.5}

Jon Haussmann
Mar 19, 2017

Multiplying all three equations, we get x 2 y 2 z 2 = 72 x^2 y^2 z^2 = 72 . Then x 2 = x 2 y 2 z 2 y 2 z 2 = 72 36 = 2 , y 2 = x 2 y 2 z 2 x 2 z 2 = 72 16 = 9 2 , z 2 = x 2 y 2 z 2 x 2 y 2 = 72 9 = 8 , \begin{aligned} x^2 &= \frac{x^2 y^2 z^2}{y^2 z^2} = \frac{72}{36} = 2, \\ y^2 &= \frac{x^2 y^2 z^2}{x^2 z^2} = \frac{72}{16} = \frac{9}{2}, \\ z^2 &= \frac{x^2 y^2 z^2}{x^2 y^2} = \frac{72}{9} = 8, \end{aligned} so x 2 + y 2 + z 2 = 2 + 9 2 + 8 = 29 2 . x^2 + y^2 + z^2 = 2 + \frac{9}{2} + 8 = \frac{29}{2}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...