Sum of Towers

Is the following integer divisible by 11?

1 0 5 1 0 5 10 + 5 1 0 5 1 0 5 \Large 10^{5^{10^{5^{10}}}}+5^{10^{5^{10^{5}}}}

No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 21, 2017

Relevant wiki: Euler's Theorem

Let the given number be N N .

N 1 0 5 1 0 5 10 + 5 1 0 5 1 0 5 m o d ϕ ( 11 ) (mod 11) Since gcd ( 5 , 11 ) = 1 , Euler’s theorem applies. ( 11 1 ) 5 1 0 5 10 + 5 1 0 5 1 0 5 m o d 10 (mod 11) Euler’s totient function ϕ ( 11 ) = 10 1 + + 5 0 (mod 11) Note that 5 n is odd n N 1 + 1 (mod 11) 0 (mod 11) \large \begin{aligned} N & \equiv 10^{5^{10^{5^{10}}}} + 5^{\color{#3D99F6}10^{5^{10^5}} \bmod \phi(11)} \text{ (mod 11)} & \small \color{#3D99F6} \text{Since }\gcd(5,11) = 1 \text{, Euler's theorem applies.} \\ & \equiv (11-1)^{\color{#D61F06}5^{10^{5^{10}}}} + 5^{\color{#3D99F6}10^{5^{10^5}} \bmod 10} \text{ (mod 11)} & \small \color{#3D99F6} \text{Euler's totient function }\phi(11) = 10 \\ & \equiv {\color{#D61F06}-1} + + 5^{\color{#3D99F6}0} \text{ (mod 11)} & \small \color{#D61F06} \text{Note that }5^n \text{ is odd } \forall \ n \in \mathbb N \\ & \equiv -1 + 1 \text{ (mod 11)} \\ & \equiv \boxed{0} \text{ (mod 11)} \end{aligned}

Yes , the number N N is divisible by 11.

Stephen Brown
Dec 20, 2017

1 0 5 1 0 5 10 m o d 11 ( 1 ) 5 1 0 5 10 m o d 11 1 m o d 11 10^{5^{10^{5^{10}}}} \mod{11} \equiv (-1)^{5^{10^{5^{10}}}} \mod{11} \equiv -1 \mod{11}

Fermat's little theorem tells us that 5 10 1 m o d 11 5^{10} \equiv 1 \mod{11} , so

5 1 0 5 1 0 5 1 m o d 11 1 0 5 1 0 5 10 + 5 1 0 5 1 0 5 m o d 11 ( 1 ) + ( 1 ) m o d 11 0 m o d 11 5^{10^{5^{10^{5}}}} \equiv 1 \mod{11} \Rightarrow 10^{5^{10^{5^{10}}}}+5^{10^{5^{10^{5}}}} \mod{11} \equiv (-1)+(1) \mod{11} \equiv 0 \mod{11}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...