Sum of zeta function upto the year

Algebra Level 5

Find the value of:

ζ ( 2 ) + ζ ( 3 ) + ζ ( 4 ) + + ζ ( 2013 ) + ζ ( 2014 ) \large \displaystyle \bigg \lfloor \zeta(2)+\zeta(3)+\zeta(4)+ \dots + \zeta(2013) + \zeta(2014) \bigg \rfloor


The answer is 2013.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Oliver Bel
Apr 5, 2014

The correct answer is actually 2013 2013 , not 2014 2014 .

Note that ζ ( n ) 1 > 0 \zeta(n)-1>0 for n > 1 n>1 .

It is easy to show that n = 2 ζ ( n ) 1 = 1 \sum_{n\mathop=2}^{\infty} \zeta(n)-1=1

Hence 0 < n = 2 2014 ζ ( n ) 1 < 1 0<\sum_{n\mathop=2}^{2014}\zeta(n)-1<1

2013 < n = 2 2014 ζ ( n ) < 2014 2013<\sum_{n\mathop=2}^{2014}\zeta(n)<2014

n = 2 2014 ζ ( n ) = 2013 \left\lfloor{\sum_{n\mathop=2}^{2014}\zeta(n)}\right\rfloor=\boxed{2013}

Mathematica gives the following approximation of the sum:

2013.99999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999994683953969593983962
6610134919562547022344337507901680806619304019175483072471512367036506
6479505134212306879444735405234606670997803446269221021067839170113458
1597508355531421845880661993463486420862693028581331060405861146746201
5299190257315584102000510908364777591103173271801283346003150456104381
3591339775918812709402056630526686660341199531069051132240414869813180
749120900902486699228

That was the solution I intended.

Proof for n = 2 ( ζ ( n ) 1 ) = 1 \displaystyle \sum_{n=2}^{\infty} (\zeta(n)-1) = 1 :

Use ζ ( n ) 1 = s = 1 1 s n 1 = s = 2 1 s n \large \zeta(n) - 1 = \displaystyle \sum_{s=1}^{\infty} \frac{1}{s^n} - 1 = \sum_{s=2}^{\infty} \frac{1}{s^n} to get

n = 2 ( ζ ( n ) 1 ) = n = 2 s = 2 1 s n \large \displaystyle \sum_{n=2}^{\infty} (\zeta(n)-1) = \displaystyle \sum_{n=2}^{\infty} \sum_{s=2}^{\infty} \frac{1}{s^n}

= s = 2 n = 2 1 s n \large \displaystyle \sum_{s=2}^{\infty} \sum_{n=2}^{\infty} \frac{1}{s^n}

= s = 2 1 s ( s 1 ) \large \displaystyle \sum_{s=2}^{\infty} \frac{1}{s(s-1)}

= s = 2 ( 1 s 1 1 s ) = 1 \large \displaystyle \sum_{s=2}^{\infty} \bigg(\frac{1}{s-1}-\frac{1}{s}\bigg) = 1

jatin yadav - 7 years, 2 months ago

In this case, wouldn't the answer to the problem be 2014 (the closest integer?)

Test User - 7 years, 2 months ago

Log in to reply

The floor function and the closest integer function are two different functions.

Oliver Bel - 7 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...