Sum on non-integer gamma argument

Calculus Level 5

If the sum n = 1 ( 1 ) n + 1 n Γ ( n 2 ) Γ ( n + 1 2 ) = π A / B C \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)}=\frac{\pi^{A/B}}{C} where A , B , C A, B, C are positive integers such that gcd ( A , B ) = 1 \text{gcd}(A,B)=1 and gcd ( A , C ) = 1 \text{gcd}(A,C)=1 . Find the value of A + B + C A+B+C .


Inspiration


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Apr 15, 2021

We note that n = 1 ( 1 ) n + 1 n Γ ( 1 2 n ) Γ ( 1 2 ( n + 1 ) ) = 1 π n = 1 ( 1 ) n + 1 n B ( 1 2 n , 1 2 ) = 1 π n = 1 0 1 ( 1 ) n + 1 n t 1 2 n 1 ( 1 t ) 1 2 d t = 1 π 0 1 ln ( 1 + t ) t 1 t d t = 2 π 0 1 ln ( 1 + u ) u 1 u 2 d u = 2 π 0 1 2 π ln ( 1 + sin θ ) sin θ d θ = 2 π × 1 8 π 2 = π 3 2 4 \begin{aligned} \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} \frac{\Gamma\big(\tfrac12n\big)}{\Gamma\big(\tfrac12(n+1)\big)} & = \; \frac{1}{\sqrt{\pi}}\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} B\big(\tfrac12n,\tfrac12\big) \; = \; \frac{1}{\sqrt{\pi}}\sum_{n=1}^\infty \int_0^1 \frac{(-1)^{n+1}}{n}t^{\frac12n - 1}(1-t)^{-\frac12}\,dt \\ & = \; \frac{1}{\sqrt{\pi}}\int_0^1 \frac{\ln(1 + \sqrt{t})}{t\sqrt{1-t}}\,dt \; = \; \frac{2}{\sqrt{\pi}} \int_0^1 \frac{\ln(1+u)}{u\sqrt{1-u^2}}\,du \; =\; \frac{2}{\sqrt{\pi}}\int_0^{\frac12\pi} \frac{\ln(1 + \sin\theta)}{\sin\theta}\,d\theta \\ & = \; \frac{2}{\sqrt{\pi}} \times \tfrac18\pi^2 \; = \; \frac{\pi^{\frac32}}{4} \end{aligned} using the substitutions t = u 2 t = u^2 , u = sin θ u = \sin\theta , and the calculations here to evaluate the final integral 0 1 2 π ln ( 1 + sin θ ) sin θ d θ = 0 1 ( 0 1 2 π d θ 1 + a sin θ ) d a = 0 1 2 1 a 2 tan 1 1 a 1 + a d a = 2 1 2 π 0 1 sin θ tan 1 2 sin 2 1 2 θ 2 cos 2 1 2 θ ( sin θ ) d θ = 1 8 π 2 \begin{aligned} \int_0^{\frac12\pi}\frac{\ln(1 + \sin\theta)}{\sin\theta}\,d\theta & =\; \int_0^1 \left(\int_0^{\frac12\pi}\frac{d\theta}{1 + a\sin\theta}\right)\,da \; = \; \int_0^1 \frac{2}{\sqrt{1-a^2}}\tan^{-1}\sqrt{\frac{1-a}{1+a}} \,da \\ & = \; 2\int_{\frac12\pi}^0 \frac{1}{\sin\theta}\tan^{-1}\sqrt{\frac{2\sin^2\frac12\theta}{2\cos^2\frac12\theta}}\,(-\sin\theta)\,d\theta \; = \; \tfrac18\pi^2 \end{aligned} making the answer 3 + 2 + 4 = 9 3 + 2 + 4 = \boxed{9} .

Naren Bhandari
Apr 14, 2021

First we establish that 0 1 ln ( x + 1 x 2 ) x d x = π 4 n = 1 ( 1 ) n + 1 n Γ ( n 2 ) Γ ( n + 1 2 ) \int_0^{1}\frac{\ln(x+\sqrt{1-x^2})}{x}dx=\frac{\sqrt{\pi}}{4}{\color{#20A900}\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)}} So we proceed by substituting x = cos y x=\cos y , then we have 0 π 2 ln ( x + 1 x 2 ) x d x = 0 π 2 ln ( cos y + sin y ) cos y sin y d y \int_0^{\frac{\pi}{2}}\frac{\ln\left(x+\sqrt{1-x^2}\right)}{x}dx=\int_0^{\frac{\pi}{2}}\frac{\ln\left(\cos y+\sin y\right)}{\cos y}\sin ydy make the change of variable y π 2 y y\mapsto \frac{\pi}{2} -y and hence of adding the obtained integral with latter integral, we get 0 π 2 ln ( cos y + sin y ) cos y sin y d y = 1 2 0 π 2 ln ( 1 + sin y ) sin y d y \int_0^{\frac{\pi}{2}}\frac{\ln\left(\cos y+\sin y\right)}{\cos y}\sin ydy=\frac{1}{2}\int_0^{\frac{\pi}{2}}\frac{\ln\left(1+\sin y\right)}{\sin y}dy For 0 < y < π 2 0 < y< \frac{\pi}{2} , 0 < sin y < 1 0< \sin y <1 and hence last integral reduces to( by series expansion ) n = 1 ( 1 ) n + 1 2 n 0 π 2 sin n 1 y d y = Wallis’ Int n = 1 ( 1 ) n + 1 4 n Γ ( 1 2 ) Γ ( n 2 ) Γ ( 1 2 + n 2 ) = π 4 n = 1 ( 1 ) n + 1 n Γ ( n 2 ) Γ ( n + 1 2 ) \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{2n}\int_0^{\frac{\pi}{2}}\sin ^{n-1} y dy\overset{\text{Wallis' Int}}{=}\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{4n}\frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{1}{2}+\frac{n}{2}\right)}\\ \hspace{4.75cm}=\frac{\sqrt{\pi}}{4}{\color{#20A900}{\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)}}} Now split the sum into even and odd parity, giving us n = 1 Γ ( n 1 2 ) ( 2 n 1 ) Γ ( n ) n = 1 Γ ( n ) 2 n Γ ( n + 1 2 ) \sum_{n=1}^{\infty}\frac{\Gamma\left(n-\frac{1}{2}\right)}{(2n-1)\Gamma(n)}-\sum_{n=1}^{\infty}\frac{\Gamma(n)}{2n\Gamma\left(n+\frac{1}{2}\right)} Now, we evaluate the former sum n = 1 Γ ( n 1 2 ) ( 2 n 1 ) Γ ( n ) = n = 0 Γ ( n + 1 2 ) ( 2 n + 1 ) Γ ( n + 1 ) = π n = 0 1 ( 2 n + 1 ) 4 n ( 2 n n ) = π 1 / 2 [ π 2 ] \sum_{n=1}^{\infty}\frac{\Gamma\left(n-\frac{1}{2}\right)}{(2n-1)\Gamma(n)}=\sum_{n=0}^{\infty}\frac{\Gamma\left(n+\frac{1}{2}\right)}{(2n+1)\Gamma(n+1)}=\sqrt{\pi}{\color{#D61F06}{\sum_{n=0}^{\infty}\frac{1}{(2n+1)4^n}{2n\choose n}}}=\pi^{1/2}{\color{#D61F06}{\left[\frac{\pi}{2}\right]}} By generating function of central binomial coefficients we n 0 x n 4 n ( 2 n n ) = 1 1 x \displaystyle \sum_{n\geq 0}\frac{x^n}{4^n}{2n\choose n}=\frac{1}{\sqrt{1-x}} . Replacing x x by x 2 x^2 on integrating from 0 0 to 1 1 gives n = 0 1 ( 2 n + 1 ) 4 n ( 2 n n ) = 0 1 d x 1 x 2 = π 2 {\color{#D61F06}{\sum_{n=0}^{\infty}\frac{1}{(2n+1)4^n}{2n\choose n}}} =\int_0^1\frac{dx}{\sqrt{1-x^2}}={\color{#D61F06}{\frac{\pi}{2}}} Further, we evaluate the latter sum n = 1 Γ ( n ) 2 n Γ ( n + 1 2 ) = π 1 / 2 2 n = 1 4 n n 2 ( 2 n n ) 1 = π 1 / 2 2 [ π 2 2 ] \sum_{n=1}^{\infty}\frac{\Gamma(n)}{2n\Gamma\left(n+\frac{1}{2}\right)}=\frac{\pi^{-1/2}}{2}{\color{#3D99F6}\sum_{n=1}^{\infty}\frac{4^n}{n^2}{2n\choose n}^{-1}}=\frac{\pi^{-1/2}}{2}{\color{#3D99F6}\left[\frac{\pi^2}{2}\right]} we use the generating function arcsin 2 ( x ) = 1 2 n = 1 ( 2 x ) 2 n n 2 ( 2 n n ) \displaystyle \arcsin^2(x)=\frac{1}{2}\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2{2n\choose n}} ( see here ). Set x = 1 x=1 we have our answer π 2 4 \frac{\pi^2}{4} . Therefore our final answer n 1 ( 1 ) n + 1 n Γ ( n 2 ) Γ ( n + 1 2 ) = π 3 / 2 2 π 3 / 2 4 = π 3 / 2 4 \sum_{n\geq 1}\frac{(-1)^{n+1}}{n}\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)}=\frac{\pi^{3/2}}{2}-\frac{\pi^{3/2}}{4}=\frac{\pi^{3/2}}{4} On multiply by π 1 / 2 4 \frac{\pi^{1/2}}{4} gives us

0 1 ln ( x + 1 x 2 ) x d x = π 2 16 \int_0^1\frac{\ln\left(x+\sqrt{1-x^2}\right)}{x}dx=\frac{\pi^2}{16}

If one is curious to derive the cited generating function then it quite easy to see by Lehmer identity, AMM, 1985 m 1 ( 2 x ) 2 m m ( 2 m m ) = 2 x arcsin ( x ) 1 x 2 \sum_{m\geq 1}\frac{(2x)^{2m}}{m{2m\choose m}}=\frac{2x\arcsin(x)}{\sqrt{1-x^2}} Dividing by by x x and hence on integrating gives us the desired form. For more interesting series on central binomial coefficients due to Lehmer, see here .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...