Sum outta nowhere!

Calculus Level 5

k = 1 ( 1 ) k k 2 ( ln ( 7 ) ) k Γ ( k ) \large{\displaystyle \sum_{k=1}^{\infty}\frac{(-1)^{k}k^{2}( \ln(7))^{k}}{\Gamma(k)}}

If the value of above summation equals A B ( ( ln 7 ) C + D ( ln 7 ) E ( ln 7 ) F ) . \large{\frac{A}{B}\left(-(\ln 7)^{C}+D (\ln 7)^{E}-(\ln 7)^{F}\right)} .

Find the six digit number A B C D E F \overline{ABCDEF} .


Details And Assumptions:

  • A , B , C , D , E , F A,B,C,D,E,F are positive integers not all distinct.

  • C < E < F C<E<F


The answer is 171323.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We know Γ ( k ) = ( k 1 ) ! \Gamma(k) = (k-1)! when k k is a positive integer.

So we have the summation as :-

ln ( 7 ) . k = 0 ( 1 ) k ( ln ( 7 ) ) k ( k + 1 ) 2 k ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 1 ) \large -\ln(7).\sum_{k=0}^{\infty} (-1)^{k}\frac{(\ln(7))^{k}(k+1)^{2}}{k!} ..........................................(1)

We have the Mcalurin expansion of e x e^{x} as

e x = k = 0 x k k ! \large e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}

So multiplying by x x on both sides and then differentiating once wrt x x on both sides we have

x e x + e x = k = 0 ( k + 1 ) x k k ! \large xe^{x} + e^{x} = \sum_{k=0}^{\infty} \frac{(k+1)x^{k}}{k!}

again doing the same thing we have :-

x 2 e x + 3 x e x + e x = k = 0 ( k + 1 ) 2 x k k ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 ) \large x^{2}e^{x} + 3xe^{x} + e^{x} = \sum_{k=0}^{\infty} \frac{(k+1)^{2}x^{k}}{k!}..............................................(2)

So to connect ( 1 ) (1) and ( 2 ) (2)

We multiply ( 2 ) (2) by ln ( 7 ) -\ln(7) and in place of x x we put x = ln ( 7 ) x=-\ln(7)

So we have our result as :-

1 7 ( ( ln ( 7 ) ) 3 + 3 ( ln ( 7 ) ) 2 ln ( 7 ) ) \large \frac{1}{7}(-(\ln(7))^{3} +3(\ln(7))^{2} - \ln(7))

So arranging A , B , C , D , E , F A,B,C,D,E,F as required by the problem we have the number

A B C D E F = 171323 ABCDEF = 171323

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...