Sum Over Sum

Level 2

1 + 1 2 5 + 1 3 5 + 1 4 5 + 1 5 5 + 1 1 2 5 + 1 3 5 1 4 5 + 1 5 5 \Large \frac{1+\frac{1}{2^{5}}+\frac{1}{3^{5}}+\frac{1}{4^{5}}+\frac{1}{5^{5}}+\cdots}{1-\frac{1}{2^{5}}+\frac{1}{3^{5}}-\frac{1}{4^{5}}+\frac{1}{5^{5}}-\cdots}

Evaluate the expression above.

Bonus : Generalize the expression above by replacing the exponent 5 with an integer n > 1 n > 1 .

32 31 \frac{32}{31} 8 7 \frac{8}{7} 64 63 \frac{64}{63} 16 15 \frac{16}{15}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 19, 2018

Q ( n ) = 1 + 1 2 n + 1 3 n + 1 4 n + 1 5 n + 1 1 2 n + 1 3 n 1 4 n + 1 5 n Riemann zeta function ζ ( s ) = k = 1 1 k s = ζ ( n ) 1 + 1 2 n + 1 3 n + 2 ( 1 2 n + 1 4 n + 1 6 n + ) = ζ ( n ) ζ ( n ) 2 2 n ( 1 + 1 2 n + 1 3 n + ) = ζ ( n ) ζ ( n ) 1 2 n 1 ζ ( n ) = 2 n 1 2 n 1 1 \begin{aligned} Q(n) & = \frac {\color{#3D99F6} 1+\frac 1{2^n}+\frac 1{3^n}+\frac 1{4^n}+\frac 1{5^n}+\cdots}{1-\frac 1{2^n}+\frac 1{3^n}-\frac 1{4^n}+\frac 1{5^n}-\cdots} & \small \color{#3D99F6} \text{Riemann zeta function }\zeta(s) = \sum_{k=1}^\infty \frac 1{k^s} \\ & = \frac {\color{#3D99F6} \zeta(n)}{1+\frac 1{2^n}+\frac 1{3^n}+\cdots - 2\left(\frac 1{2^n}+\frac 1{4^n}+\frac 1{6^n}+\cdots \right)} \\ & = \frac {\zeta(n)}{\zeta(n) - \frac 2{2^n} \left(1+\frac 1{2^n}+\frac 1{3^n}+\cdots \right)} \\ & = \frac {\zeta(n)}{\zeta(n) - \frac 1{2^{n-1}}\zeta(n)} \\ & = \frac {2^{n-1}}{2^{n-1}-1} \end{aligned}

For n = 5 n=5 , Q ( 5 ) = 2 4 2 4 1 = 16 15 Q(5) = \dfrac {2^4}{2^4-1} = \boxed{\dfrac {16}{15}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...