Sum \rightarrow Product

Algebra Level 1

1 1 3 + 1 5 1 7 + 1 9 1 11 + = π 4 1 1 × 3 + 1 5 × 7 + 1 9 × 11 + = π x \begin{aligned} 1 - \dfrac{1}{3} + \dfrac{1}{5} - \dfrac{1}{7} + \dfrac{1}{9} - \dfrac{1}{11} + \cdots & = \dfrac{\pi}{4} \\\\ \dfrac{1}{1 \times 3} + \dfrac{1}{5 \times 7} + \dfrac{1}{9 \times 11} + \cdots &=\dfrac{\pi}{\color{#3D99F6}x} \end{aligned}

What is x ? {\color{#3D99F6}x}?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

13 solutions

Ram Mohith
Aug 6, 2018

Given : 1 1 3 + 1 5 1 7 + 1 9 1 11 + . . . = π 4 1 - \dfrac{1}{3} + \dfrac{1}{5} - \dfrac{1}{7} + \dfrac{1}{9} - \dfrac{1}{11} + ... = \dfrac{\pi}{4}

Now, just take LCM for every two consecutive fractions. 3 1 1 × 3 + 7 5 5 × 7 + 11 9 9 × 11 + . . . = π 4 2 ( 1 1 × 3 + 1 5 × 7 + 1 9 × 11 + . . . ) = π 4 1 1 × 3 + 1 5 × 7 + 1 9 × 11 + . . . = π 8 = π x \begin{array}{c}~\implies \dfrac{3 - 1}{1 \times 3} + \dfrac{7 - 5}{5 \times 7} + \dfrac{11 - 9}{9 \times 11} + ... = \dfrac{\pi}{4} \\ \implies 2 \left(\dfrac{1}{1 \times 3} + \dfrac{1}{5 \times 7} + \dfrac{1}{9 \times 11} + ... \right) = \dfrac{\pi}{4} \\ \implies \dfrac{1}{1 \times 3} + \dfrac{1}{5 \times 7} + \dfrac{1}{9 \times 11} + ... = \dfrac{\pi}{8} = \dfrac{\pi}{\color{#3D99F6}x} \\ \end{array} x = 8 \therefore \color{#3D99F6}x = 8

To enlarge the size of braces , ( ) and [ ] you must be using \ ( \left ( statement \right) ) which result as ( . . . . . 1234.... . . . . 678999 ) \left(\dfrac{.....1234....}{....678999}\right) .

Naren Bhandari - 2 years, 10 months ago

Log in to reply

Thanks for your guidance. I have updated my solution. I am trying from long back to enlarge the size of brackets but always failed. But now I learned it.

Ram Mohith - 2 years, 10 months ago

Notice that by Riemann series theorem, this only works because the original series is conditionally convergent, so a complete answer would have to prove that sum of all reciprocals of odd numbers diverges.

Jacek Olczyk - 2 years, 9 months ago

Similar solution with @Ram Mohith 's

1 1 3 + 1 5 1 7 + 1 9 1 11 + = π 4 Given 3 1 1 × 3 + 7 5 5 × 7 + 11 9 9 × 11 + = π 4 2 1 × 3 + 2 5 × 7 + 2 9 × 11 + = π 4 Divide both sides by 2 1 1 × 3 + 1 5 × 7 + 1 9 × 11 + = π 8 \begin{aligned} {\color{#3D99F6}1 - \frac 13} + {\color{#D61F06}\frac 15 - \frac 17} + {\color{#3D99F6}\frac 19 - \frac 1{11}} + \cdots & = \frac \pi 4 & \small \color{#3D99F6} \text{Given} \\ {\color{#3D99F6} \frac {3-1}{1\times 3}} + {\color{#D61F06} \frac {7-5}{5\times 7}} + {\color{#3D99F6} \frac {11-9}{9\times 11}} + \cdots & = \frac \pi 4 \\ {\color{#3D99F6} \frac 2{1\times 3}} + {\color{#D61F06} \frac 2{5\times 7}} + {\color{#3D99F6} \frac 2{9\times 11}} + \cdots & = \frac \pi 4 & \small \color{#3D99F6} \text{Divide both sides by }2 \\ \implies \frac 1{1\times 3} + \frac 1{5\times 7} + \frac 1{9\times 11} + \cdots & = \frac \pi {\boxed 8} \end{aligned}

Therefore, x = 8 x = \boxed 8 .

Naren Bhandari
Aug 12, 2018

Observe that 1 1 + x 2 = 1 x 2 + x 4 x 6 + x < 1 \begin{aligned}\dfrac{1}{1+x^2} = 1 -x^2 +x^4 -x^6 +\cdots \qquad |x| < 1 \end{aligned} Integrating we obtain 1 1 + x 2 = x x 3 3 + x 5 5 x 7 7 + x 9 9 x 11 11 + arc tan x = x ( 3 x 2 ) 3 + x 5 ( 7 5 x 2 ) 3 × 5 + x 9 ( 11 9 x 2 ) 9 × 11 + 0 1 arc tan x = π 4 = 2 3 + 2 3 × 5 + 2 7 × 9 + 2 9 × 11 + π 8 = 1 1 × 3 + 1 5 × 7 + 1 9 × 11 + \begin{aligned} \int \dfrac{1}{1+x^2}& = x- \dfrac{x^3}{3} + \dfrac{x^5}{5} -\dfrac{x^7}{7}+\dfrac{x^9}{9} -\dfrac{x^{11}}{11}+\cdots \\ \text{arc}\tan x & = \dfrac{x\,(3-x^2)}{3}+ \dfrac{x^5\,(7-5x^2)}{3\times 5} + \dfrac{x^9\,(11-9x^2)}{9\times 11}+ \cdots \\ \therefore \int_{0}^{1}\text{arc}\tan x & = \dfrac{\pi}{4}= \dfrac{2}{3} +\dfrac{2}{3\times 5} +\dfrac{2}{7\times 9}+\dfrac{2}{9\times 11}+\cdots \\ \dfrac{\pi}{8} &= \dfrac{1}{1 \times 3} + \dfrac{1}{5 \times 7} + \dfrac{1}{9 \times 11} +\cdots\end{aligned} Hence x = 8 x=8 .

A bit complicated but beautiful !

Cyril Gauthier - 2 years, 10 months ago

a few typos...

Steen Grode - 2 years, 10 months ago
Noel Lo
Aug 12, 2018

1 a ( a + 2 ) = 1 2 ( 1 a 1 a + 2 ) \dfrac{1}{a(a+2)}=\dfrac{1}{2}\left(\dfrac{1}{a}-\dfrac{1}{a+2}\right)

Thus the result is 1 2 π 4 \dfrac{1}{2}\dfrac{\pi}{4} hence x = 2 × 4 = 8 x=2\times 4=\boxed{8} .

Tolga Gürol
Aug 15, 2018

Related wiki: Partial Fractions - Linear Factors

1 n × ( n + 2 ) = A n + B n + 2 = n ( A + B ) + 2 A n × ( n + 2 ) \dfrac {1}{n\times(n+2)} = \dfrac{A}{n} + \dfrac {B}{n+2} = \dfrac{n(A+B)+2A}{n\times(n+2)}

Solve for A A and B B

A = 1 2 , B = 1 2 A=\dfrac{1}{2}, B= -\dfrac{1}{2}

Then,

1 1 × 3 + 1 5 × 7 + 1 9 × 11 + = 1 2 ( 1 1 1 3 + 1 5 1 7 + 1 9 1 11 + ) = π 8 \dfrac{1}{1\times3} + \dfrac{1}{5\times7} + \dfrac{1}{9\times11} + \cdots = \dfrac{1}{2} \left( \dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{9}-\dfrac{1}{11}+\cdots \right) = \dfrac{\pi}{\color{#3D99F6}8}

Therefore, x = 8 x=\boxed {8}

Gia Hoàng Phạm
Aug 18, 2018

So,we have

1 1 3 + 1 5 1 7 + 1 9 + = π 4 = a 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}+\dots=\frac{\pi}{4}=a & 1 1 × 3 + 1 7 × 5 + 1 11 × 9 + = b \frac{1}{1 \times 3}+\frac{1}{7 \times 5}+\frac{1}{11 \times 9}+\dots=b

which is

3 1 3 × 1 + 7 5 7 × 5 + 11 9 11 × 9 + = π 4 2 b \frac{3-1}{3 \times 1}+\frac{7-5}{7 \times 5}+\frac{11-9}{11 \times 9}+\dots=\frac{\pi}{4} \implies 2b .So, π 8 = b \frac{\pi}{8}=b

Hence, x = 8 \boxed{\large{x=8}}

Vinod Kumar
Aug 12, 2018

Group two consecutive terms in the first series and show half of this is equal to to each term in the second series. Therefore,

Answer=π/8

Calvin Osborne
Aug 18, 2018

First note that

a b = ( 1 b 1 a ) ( a b ) a-b=(\dfrac{1}{b}-\dfrac{1}{a})(ab)

Therefore,

1 1 1 3 = 2 ( 1 1 × 3 ) , \frac{1}{1}-\frac{1}{3} = 2(\frac{1}{1 \times 3}), 1 5 1 7 = 2 ( 1 5 × 7 ) , \frac{1}{5}-\frac{1}{7} = 2(\frac{1}{5 \times 7}), 1 9 1 11 = 2 ( 1 9 × 1 ) , \frac{1}{9}-\frac{1}{11} = 2(\frac{1}{9 \times 1}), . . . ...

Finally,

1 1 × 3 + 1 5 × 7 + 1 9 × 11 + . . . = 1 2 ( 1 1 3 + 1 5 1 7 + 1 9 1 11 + . . . ) = π 8 \frac{1}{1 \times 3} + \frac{1}{5 \times 7} + \frac{1}{9 \times 11} + ... = \frac{1}{2}(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+...) = \frac{\pi}{8}

x = 8 \therefore x = \boxed{8}

Jack Ceroni
Aug 18, 2018

Let us express the first sum as:

S 1 = 1 1 3 + 1 5 1 7 + n = 0 1 4 n + 1 1 4 n + 3 S_1 \ = \ 1 \ - \ \dfrac{1}{3} \ + \ \dfrac{1}{5} \ - \ \dfrac{1}{7} \ + \ … \ \Rightarrow \ \displaystyle\sum_{n=0}^{\infty} \ \dfrac{1}{4n \ + \ 1} \ - \ \dfrac{1}{4n \ + \ 3}

We can express the second sum as:

S 2 = 1 1 × 3 + 1 5 × 7 + 1 9 × 11 + n = 0 1 ( 4 n + 1 ) ( 4 n + 3 ) S_2 \ = \ \dfrac{1}{1 \ \times \ 3} \ + \ \dfrac{1}{5 \ \times \ 7} \ + \ \dfrac{1}{9 \ \times \ 11} \ + \ … \ \Rightarrow \ \displaystyle\sum_{n=0}^{\infty} \ \dfrac{1}{(4n \ + \ 1)(4n \ + \ 3)}

Since we have similar terms in the denominators of the expressions in the sums, we can simply find partial fractions for the expression enclosed in the second sum, to make it look like the first sum. Let us set:

A 4 n + 1 + B 4 n + 3 = 1 ( 4 n + 1 ) ( 4 n + 3 ) \dfrac{A}{4n \ + \ 1} \ + \ \dfrac{B}{4n \ + \ 3} \ = \ \dfrac{1}{(4n \ + \ 1)(4n \ + \ 3)}

We now must solve for A A and B B . Multiplying both sides by ( 4 n + 1 ) ( 4 n + 3 ) (4n \ + \ 1)(4n \ + \ 3) gives us:

A ( 4 n + 3 ) + B ( 4 n + 1 ) = 1 4 n ( A + B ) + 3 A + B = 1 A(4n \ + \ 3) \ + \ B(4n \ + \ 1) \ = \ 1 \ \Rightarrow \ 4n(A \ + \ B) \ + \ 3A \ + \ B \ = \ 1

The sums in question are π 4 \dfrac{\pi}{4} and π x \dfrac{\pi}{x} , so it is just a matter of picking a constant to multiply the first sum by, to yield the solution for x x and the second sum. Because of this, we must get rid of n n by simply setting A + B = 0 A \ + \ B \ = \ 0 , giving us two equations: A + B = 0 A \ + \ B \ = \ 0 and 3 A + B = 1 3A \ + \ B \ = \ 1 . Solving this system gives us A = 1 2 A \ = \ \frac{1}{2} and B = 1 2 B \ = \ -\frac{1}{2} . We can then rewrite the second sum with A A and B B :

S 2 = n = 0 1 2 ( 4 n + 1 ) 1 2 ( 4 n + 3 ) = 1 2 n = 0 1 4 n + 1 1 4 n + 3 = 1 2 S 1 = π 8 S_2 \ = \ \displaystyle\sum_{n=0}^{\infty} \ \dfrac{1}{2(4n \ + \ 1)} \ - \ \dfrac{1}{2(4n \ + \ 3)} \ = \ \dfrac{1}{2} \ \displaystyle\sum_{n=0}^{\infty} \ \dfrac{1}{4n \ + \ 1} \ - \ \dfrac{1}{4n \ + \ 3} \ = \ \dfrac{1}{2} S_1 \ = \ \dfrac{\pi}{8}

Therefore, x = 8 x \ = \ 8 .

Osvaldo Maccari
Aug 17, 2018

Use excell to load the fractions and let it calculate the tendency. Obviously: The tendency is 8!!!!!!!!

Olaf Doschke
Aug 17, 2018

After you see the pattern 1 n 1 n + 2 = n + 2 n ( n + 2 ) n n ( n + 2 ) = 2 n ( n + 2 ) \frac{1}{n}-\frac{1}{n+2} = \frac{n+2}{n(n+2)}-\frac{n}{n(n+2)} = \frac{2}{n(n+2)} you can conclude by pairing every two terms in the first series, its value is double the value of second series and thus x=8.

Rocco Dalto
Aug 16, 2018

Let 1 1 3 + 1 5 1 7 + 1 9 1 11 + . . . = π 4 1 - \dfrac{1}{3} + \dfrac{1}{5} - \dfrac{1}{7} + \dfrac{1}{9} - \dfrac{1}{11} + ...= \dfrac{\pi}{4} and S = n = 0 1 ( 4 n + 1 ) ( 4 n + 3 ) S = \sum_{n = 0}^{\infty} \dfrac{1}{(4n + 1)(4n + 3)} .

Using partial fractions we obtain:

1 ( 4 n + 1 ) ( 4 n + 3 ) = A 4 n + 1 + B 4 n + 3 1 = 4 ( A + B ) n + 3 A + B = 1 \dfrac{1}{(4n + 1)(4n + 3)} = \dfrac{A}{4n + 1} + \dfrac{B}{4 n + 3} \implies 1 = 4(A + B)n + 3A + B = 1 \implies

A + B = 0 A + B = 0

3 A + B = 1 3A + B = 1

A = 1 2 \implies A = \dfrac{1}{2} and B = 1 2 B = -\dfrac{1}{2}

S = 1 2 n = 0 ( 1 4 n + 1 1 4 n + 3 ) = 1 2 ( 1 1 3 + 1 5 1 7 + 1 9 1 11 + . . . ) = 1 2 ( π 4 ) = π 8 x = 8 \implies S = \dfrac{1}{2}\sum_{n = 0}^{\infty} (\dfrac{1}{4n + 1} - \dfrac{1}{4n + 3}) = \dfrac{1}{2}(1 - \dfrac{1}{3} + \dfrac{1}{5} - \dfrac{1}{7} + \dfrac{1}{9} - \dfrac{1}{11} + ... ) = \dfrac{1}{2}(\dfrac{\pi}{4}) = \dfrac{\pi}{8} \implies \boxed{x = 8} .

Given : 1 - 1/3 + 1/5 - 1/7 + 1/9 + ..... = p i pi /4

So, we can group this as follows (1 + 1/5 + 1/9 + 1/13) - (1/3 + 1/7 + 1/11 + 1/15) = p i pi /4

This gives, sum of 1/(4n+1) - sum of 1/(4n+3) = p i pi /4 , for n = 0 to infinity

Hence, sum of 1/(4n+1) - 1/(4n+3) = p i pi /4

Taking lcm, sum of (4n+3-4n-1)/{(4n+1)(4n+3)} = p i pi /4, which implies sum of 2/{(4n+1)(4n+3)} = p i pi /4

Now taking the second equation,

1/(1 3) + 1/(5 7) + 1/(9*11) + .........

can be written as sum of 1/{(4n+1)(4n+3) for n = 0 to infinity

Hence, this will be equal to p i pi /8

So x = 8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...