Sum Sam and Product Pete are in class when their teacher gives Sam the Sum of two numbers and Pete the product of the same two numbers (these numbers are greater than or equal to 2). They must figure out the two numbers.
Sam: I don't know what the numbers are Pete.
Pete: I knew you didn't know the numbers... But neither do I.
Sam: In that case, I do know the numbers.
What are the numbers?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Answer: The numbers are 3 and 4.
Since Sam knows the sum of the numbers (x + y) he would only know the answer immediately if the sum was 4 (2 + 2) or 5 (3 + 2). Then when Pete (who knows x*y) knew that Sam didn't know the answer the product must have several numbers that add up to the sum (7 = 3 + 4, 7 = 5 + 2). When Pete doesn't know the answer at this point we know the product must have more than one pair of viable factors (12 = 3 * 4, 12 = 6 * 2). At this point Sam knows the numbers are 3 and 4 because they are the only numbers that meet these criteria.