Sum the cosine limit

Calculus Level 4

Let f ( x ) = lim n ( cos ( x n ) ) n \displaystyle f(x)= \lim_{n \rightarrow \infty} \left(\cos \left(\frac{x}{\sqrt{n}}\right)\right)^{n} and g ( x ) = 1 2 ln ( f ( x ) ) \displaystyle g(x) = \dfrac{-1}{2\ln (f(x))} .

The value of n = 1 g ( n ) \displaystyle \sum_{n = 1}^{\infty} g(n) has a closed form. Find this closed form.

Give your answer to 3 decimal places.


The answer is 1.6449.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jul 19, 2016

The limit is 1 1^{\infty} form , hence

f ( x ) = e x 2 lim n ( cos ( x n ) 1 ) x 2 n = e x 2 / 2 f(x)=e^{x^2\displaystyle\lim_{n\to\infty}\frac{ \left(\cos \left(\dfrac{x}{\sqrt{n}}\right)-1\right)}{\frac{x^2}{n}}}=e^{-x^2/2}

Alternatively:- f ( x ) = e lim n n ln ( cos ( x n ) ) = e lim n ln ( cos ( x n ) ) 1 n = e lim n ln ( cos ( x n ) 1 + 1 ) ( cos x n 1 ) 1 n × ( cos x n 1 ) = e x 2 lim n ( cos x n 1 ) x 2 n = e x 2 2 \small{\begin{aligned}f(x)=e^{\displaystyle\lim_{n \rightarrow \infty} n\ln \left(\cos \left(\dfrac{x}{\sqrt{n}}\right)\right)}=&e^{\displaystyle\lim_{n \rightarrow \infty} \frac{\ln \left(\cos \left(\dfrac{x}{\sqrt{n}}\right)\right)}{\frac 1n}}\\=& e^{\displaystyle\lim_{n \rightarrow \infty} \frac{\ln \left(\color{#D61F06}{\cos \left(\dfrac{x}{\sqrt{n}}\right)-1}+1\right)}{\color{#D61F06}{\left(\cos \dfrac{x}{\sqrt{n}}-1\right)}\frac 1n}\times\left(\cos \dfrac{x}{\sqrt{n}}-1\right)}\\=&e^{x^2 \displaystyle\lim_{n\to\infty}\dfrac{\left(\cos \dfrac{x}{\sqrt{n}}-1\right)}{\frac{x^2}{n}}}=e^{-\frac{x^2}{2}}\end{aligned}}

Apply Lhopital to see f ( x ) = e x 2 / 2 f(x)=e^{-x^2/2} .

Hence g ( x ) = 1 x 2 g(x)=\dfrac{1}{x^2}

n = 1 g ( n ) = n = 1 1 n 2 = ζ ( 2 ) = π 2 6 1.6449 \therefore \sum_{n=1}^{\infty}g(n)=\sum_{n=1}^{\infty}\dfrac{1}{n^2}=\zeta (2)=\dfrac{\pi^2}{6}\approx \boxed{1.6449}

Nice solution! (+1)

I used the substitution of n = 1/t and for very small x, cosx = 1 - x^2/2

Harsh Shrivastava - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...