Sum the log!

Calculus Level 3

k = 2 ln ( 1 1 k 2 ) = ? \large \sum_{k=2}^\infty \ln \left( 1 - \dfrac1{k^2} \right) =\, ?

Give your answer to 3 decimal places.


The answer is -0.693.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Abdelghani Ssoris
Jan 13, 2016

We have:

Sorry, my mistake.

Chew-Seong Cheong - 5 years, 5 months ago
Chew-Seong Cheong
Jan 16, 2016

Same solution as Abdelghani ßoris presented differently.

k = 2 ln ( 1 1 k 2 ) = k = 2 ln ( k 2 1 k 2 ) = k = 2 ln ( ( k 1 ) ( k + 1 ) k 2 ) = lim n ln ( k = 2 n ( k 1 ) ( k + 1 ) k 2 ) = lim n ln ( k = 1 n 1 k k = 3 n + 1 k k = 2 n k 2 ) = lim n ln ( n + 1 2 n ) = lim n ln ( 1 + 1 n 2 ) = ln ( 1 2 ) = 0.693 \begin{aligned} \sum_{k=2}^\infty \ln\left(1 - \frac{1}{k^2} \right) & = \sum_{k=2}^\infty \ln\left(\frac{k^2 - 1}{k^2} \right) \\ & = \sum_{k=2}^\infty \ln\left(\frac{(k-1)(k+1)}{k^2} \right) \\ & = \lim_{n \to \infty}\ln \left( \prod_{k=2}^n \frac{(k-1)(k+1)}{k^2} \right) \\ & = \lim_{n \to \infty} \ln \left( \frac{\displaystyle \prod_{k=\color{#D61F06}{1}}^{\color{#D61F06}{n-1}}k \prod_{k=\color{#D61F06}{3}}^{\color{#D61F06}{n+1}}k}{\displaystyle \prod_{k=\color{#D61F06}{2}}^{\color{#D61F06}{n}}k^2} \right) \\ & = \lim_{n \to \infty} \ln \left( \frac{n+1}{2n} \right) \\ & = \lim_{n \to \infty} \ln \left( \frac{1+\frac{1}{n}}{2} \right) \\ & = \ln \left( \frac{1}{2} \right) = \boxed{-0.693} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...