Sum them all

What is the sum of all positive divisors of the number 12600?


The answer is 48360.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marco Brezzi
Aug 13, 2017

To generalize the problem, consider a positive integer n n

n = p 1 e 1 p 2 e 2 p n e n n=p_1^{e_1}\cdot p_2^{e_2}\cdot\ldots\cdot p_n^{e_n}

Where the p i c i { 1 , 2 , , n } p_i\phantom{c} i\in\{1,2,\ldots,n\} are n n 's prime factors

Now consider the following product

P = ( 1 + p 1 + p 1 2 + + p 1 e 1 ) ( 1 + p 2 + p 2 2 + + p 2 e 2 ) ( 1 + p n + p n 2 + + p n e n ) P=(1+p_1+p_1^2+\ldots+p_1^{e_1})(1+p_2+p_2^2+\ldots+p_2^{e_2})\dots(1+p_n+p_n^2+\ldots+p_n^{e_n})

Claim: \textbf{Claim:}

When we expand P P we get the sum of all the divisors of n n

Proof: \textbf{Proof:}

All the numbers we get when we expand P P are different and they are all of the form

p 1 a 1 p 2 a 2 p n a n p_1^{a_1}\cdot p_2^{a_2}\cdot\ldots\cdot p_n^{a_n}

Where 0 a i e 1 i i { 1 , 2 , , n } 0\leq a_i \leq e_1 \phantom{i} \forall i\in\{1,2,\ldots ,n\}

Since when we expand we get ( e 1 + 1 ) ( e 2 + 1 ) ( e n + 1 ) (e_1+1)(e_2+1)\ldots(e_n+1) terms, they must indeed be all the divisors of n n \square

In a compact form

P = i = 1 n j = 0 e i p i j = i = 1 n p i e i + 1 1 p i 1 P=\displaystyle\prod_{i=1}^n \displaystyle\sum_{j=0}^{e_i} p_i^j=\displaystyle\prod_{i=1}^n \dfrac{p_i^{e_i+1}-1}{p_i-1}

In this case n = 12600 = 2 3 3 2 5 2 7 n=12600=2^3\cdot 3^2\cdot 5^2 \cdot 7 , so

P = 2 4 1 2 1 3 3 1 3 1 5 3 1 5 1 7 2 1 7 1 = 15 13 31 8 = 48360 \begin{aligned} P&=\dfrac{2^4-1}{2-1}\cdot\dfrac{3^3-1}{3-1}\cdot\dfrac{5^3-1}{5-1}\cdot\dfrac{7^2-1}{7-1}\\ &=15\cdot 13 \cdot 31 \cdot 8=\boxed{48360} \end{aligned}

Brilliant!

Victor Paes Plinio - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...