Sum them

Algebra Level 3

1 x 4 + 15 + x 4 = 2 \large \sqrt[4]{1-x} + \sqrt[4]{15+x} = 2

What is the sum of all values of x x which satisfy the above equation?


The answer is -14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 24, 2017

1 x 4 + 15 + x 4 = 2 Let y = x + 7 8 y 4 + 8 + y 4 = 2 Raise both sides to the power of 4 8 y + 4 ( 8 y ) 3 4 ( 8 + y ) 1 4 + 6 ( 8 y ) 1 2 ( 8 + y ) 1 2 + 4 ( 8 y ) 1 4 ( 8 + y ) 3 4 + 8 + y = 16 4 ( 8 y ) 1 2 ( 64 y 2 ) 1 4 + 6 ( 64 y 2 ) 1 2 + 4 ( 64 y 2 ) 1 4 ( 8 + y ) 1 2 = 0 ( 64 y 2 ) 1 4 ( 2 ( 8 y ) 1 2 + 3 ( 64 y 2 ) 1 4 + 2 ( 8 + y ) 1 2 ) = 0 ( 64 y 2 ) 1 4 ( 2 ( 8 y ) 1 2 + 4 ( 8 y ) 1 4 ( 8 + y ) 1 4 + 2 ( 8 + y ) 1 2 ( 8 y ) 1 4 ( 8 + y ) 1 4 ) = 0 ( 64 y 2 ) 1 4 ( 2 ( 8 y 4 + 8 y 4 ) 2 ( 8 y ) 1 4 ( 8 + y ) 1 4 ) = 0 Note that 8 y 4 + 8 y 4 = 2 ( 8 y ) 1 4 ( 8 + y ) 1 4 ( 8 ( 64 y 2 ) 1 4 ) = 0 \begin{aligned} \sqrt[4]{1-x} + \sqrt[4]{15+x} & = 2 & \small \color{#3D99F6} \text{Let }y=x+7 \\ \sqrt[4]{8-y} + \sqrt[4]{8+y} & = 2 & \small \color{#3D99F6} \text{Raise both sides to the power of }4 \\ 8 - y + 4(8-y)^\frac 34 (8+y)^\frac 14 + 6(8-y)^\frac 12 (8+y)^\frac 12 + 4(8-y)^\frac 14 (8+y)^\frac 34 + 8 + y & = 16 \\ 4(8-y)^\frac 12 (64-y^2)^\frac 14 + 6(64-y^2)^\frac 12 + 4(64-y^2)^\frac 14 (8+y)^\frac 12 & = 0 \\ (64-y^2)^\frac 14\left(2(8-y)^\frac 12 + 3(64-y^2)^\frac 14 + 2(8+y)^\frac 12\right) & = 0 \\ (64-y^2)^\frac 14\left(2(8-y)^\frac 12 + 4(8-y)^\frac 14 (8+y)^\frac 14 + 2(8+y)^\frac 12 - (8-y)^\frac 14 (8+y)^\frac 14 \right) & = 0 \\ (64-y^2)^\frac 14\left(2 {\color{#3D99F6}\left(\sqrt[4]{8-y}+ \sqrt[4]{8-y}\right)^2}- (8-y)^\frac 14 (8+y)^\frac 14 \right) & = 0 & \small \color{#3D99F6} \text{Note that }\sqrt[4]{8-y}+ \sqrt[4]{8-y} = 2 \\ (8-y)^\frac 14 (8+y)^\frac 14 \left(8- (64-y^2)^\frac 14 \right) & = 0 \end{aligned}

y = { 8 x = 15 A solution 0 x = 7 Not a solution 8 x = 1 A solution \implies y = \begin{cases} -8 & \implies x = -15 & \color{#3D99F6} \text{A solution} \\ 0 & \implies x = - 7 & \color{#D61F06} \text{Not a solution} \\ 8 & \implies x = 1 & \color{#3D99F6} \text{A solution} \end{cases}

Therefore, the sum of solutions is 15 + 1 = 14 -15+1=\boxed{-14} .

Kadek Yuki Andika
Nov 23, 2017

( 1 x 4 + 15 + x 4 ) 4 = 2 4 {\mathrm{(}\sqrt[4]{1-x}\mathrm{\ +}\sqrt[4]{15+x}\mathrm{)}}^4 = 2^4 16 + 4 ( 1 x ) 3 ( 15 + x ) 4 + 6 ( 1 x ) 2 ( 15 + x ) 2 4 + ( 1 x ) ( 15 + x ) 3 4 = 16 16 + 4\sqrt[4]{{\left(1-x\right)}^3(15+x)} + 6\sqrt[4]{{\left(1-x\right)}^2{\left(15+x\right)}^2} + \sqrt[4]{\left(1-x\right){\left(15+x\right)}^3} = 16 4 ( 1 x ) 3 ( 15 + x ) 4 + 6 ( 1 x ) 2 ( 15 + x ) 2 4 + ( 1 x ) ( 15 + x ) 3 4 = 0 4\sqrt[4]{{\left(1-x\right)}^3(15+x)} + 6\sqrt[4]{{\left(1-x\right)}^2{\left(15+x\right)}^2} + \sqrt[4]{\left(1-x\right){\left(15+x\right)}^3} = 0 1 x 4 15 + x 4 ( 4 ( 1 x ) 2 4 + 6 ( 1 x ) ( 15 + x ) 4 + ( 15 + x ) 2 4 ) = 0 \sqrt[4]{1-x}\sqrt[4]{15+x}(4\sqrt[4]{{\left(1-x\right)}^2} + 6\sqrt[4]{{\left(1-x\right)}{\left(15+x\right)}}+\sqrt[4]{{\left(15+x\right)}^2})= 0 4 ( 1 x ) 2 4 + 6 ( 1 x ) ( 15 + x ) 4 + ( 15 + x ) 2 4 4\sqrt[4]{{\left(1-x\right)}^2} + 6\sqrt[4]{{\left(1-x\right)}{\left(15+x\right)}}+ \sqrt[4]{{\left(15+x\right)}^2} is increasing so x= 1 V x= -15 , the sum is -14

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...