Sum this infinite alternating Series

Calculus Level 3

1 1 5 + 1 7 1 11 + 1 13 1 17 + 1 19 1 23 + = π a b 1-\frac 1{5}+\frac 1{7}-\frac 1{11}+\frac 1{13}-\frac 1{17}+\frac 1{19}-\frac 1{23}+\cdots=\frac {\pi}{a \sqrt{b}}

The equation above holds true for positive coprime integers a a and b b . Find a + b a+b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let S = 1 1 5 + 1 7 1 11 + 1 13 S = 1-\dfrac 15 + \dfrac 17 - \dfrac 1{11} + \dfrac 1{13} - \cdots . Consider the following Maclaurin series:

ln ( 1 + x 1 x ) = 1 2 ( x + x 3 3 + x 5 5 + x 7 7 + x 9 9 + x 11 11 + x 13 13 + ) Putting x = ω = e 2 π 3 i , 3rd root of unity. ln ( 1 + e 2 π 3 i 1 e 2 π 3 i ) = 1 2 ( ω + ω 3 3 + ω 5 5 + ω 7 7 + ω 9 9 + ω 11 11 + ω 13 13 + ) = 1 2 ( ω + 1 3 + ω 2 5 + ω 7 + 1 9 + ω 2 11 + ω 13 + ) Taking the imaginary part. ( ln ( 1 + e 2 π 3 i 1 e 2 π 3 i ) ) = 1 2 ( sin 2 π 3 + sin 0 3 + sin 4 π 3 5 + sin 2 π 3 7 + sin 0 9 + sin 4 π 3 11 + sin 2 π 3 13 + ) = 1 2 ( 3 2 + 0 3 2 1 5 + 3 2 1 7 + 0 3 2 1 11 + 3 2 1 13 ) = 3 4 ( 1 1 5 + 1 7 1 11 + 1 13 ) = 3 4 S \begin{aligned} \ln \left(\frac {1+x}{1-x}\right) & = \frac 12 \left(x + \frac {x^3}3 + \frac {x^5}5 + \frac {x^7}7 + \frac {x^9}9 + \frac {x^{11}}{11} + \frac {x^{13}}{13} + \cdots \right) & \small \color{#3D99F6} \text{Putting }x = \omega = e^{\frac {2\pi}3 i} \text{, 3rd root of unity.} \\ \ln \left(\frac {1+e^{\frac {2\pi}3 i}}{1-e^{\frac {2\pi}3 i}}\right) & = \frac 12 \left(\omega + \frac {\omega^3}3 + \frac {\omega^5}5 + \frac {\omega^7}7 + \frac {\omega^9}9 + \frac {\omega^{11}}{11} + \frac {\omega^{13}}{13} + \cdots \right) \\ & = \frac 12 \left( \omega + \frac 13 + \frac {\omega^2}5 + \frac {\omega}7 + \frac 19 + \frac {\omega^2}{11} + \frac {\omega}{13} + \cdots \right) & \small \color{#3D99F6} \text{Taking the imaginary part.} \\ \Im \left(\ln \left(\frac {1+e^{\frac {2\pi}3 i}}{1-e^{\frac {2\pi}3 i}}\right) \right) & = \frac 12 \left(\sin \frac {2\pi}3 + \frac {\sin 0}3 + \frac {\sin \frac {4\pi}3}5 + \frac {\sin \frac {2\pi}3}7 + \frac {\sin 0}9 + \frac {\sin \frac {4\pi}3}{11} + \frac {\sin \frac {2\pi}3}{13} + \cdots \right) \\ & = \frac 12 \left(\frac {\sqrt 3}2 + 0 - \frac {\sqrt 3}2\cdot \frac 15 + \frac {\sqrt 3}2 \cdot \frac 17 + 0 - \frac {\sqrt 3}2 \cdot \frac 1{11} + \frac {\sqrt 3}2 \cdot \frac 1{13} - \cdots \right) \\ & = \frac {\sqrt 3}4 \left( 1 - \frac 15 + \frac 17 - \frac 1{11} + \frac 1{13} - \cdots \right) \\ & = \frac {\sqrt 3}4 S \end{aligned}

Now, we have:

S = 4 3 ( ln ( 1 + e 2 π 3 i 1 e 2 π 3 i ) ) = 4 3 ( ln ( 3 + 3 i 1 3 i ) ) = 4 3 ( ln ( ( 3 + 3 i ) ( 1 + 3 i ) ( 1 3 i ) ( 1 + 3 i ) ) ) = 4 3 ( ln ( 4 3 i 4 ) ) = 4 3 ( ln 3 2 + ln i ) = 4 3 ( ln 3 2 + ln e π 2 i ) = 4 3 ( ln 3 2 + π 2 i ) = π 2 3 \begin{aligned} S & = \frac 4{\sqrt 3} \Im \left(\ln \left(\frac {1+e^{\frac {2\pi}3 i}}{1-e^{\frac {2\pi}3 i}}\right) \right) = \frac 4{\sqrt 3} \Im \left(\ln \left(\frac {3+\sqrt 3 i}{1 - \sqrt 3 i}\right) \right) = \frac 4{\sqrt 3} \Im \left(\ln \left(\frac {(3+\sqrt 3 i)(1+\sqrt 3 i)}{(1 - \sqrt 3 i)(1+\sqrt 3 i)}\right) \right) \\ & = \frac 4{\sqrt 3} \Im \left(\ln \left(\frac {4\sqrt 3 i}4\right) \right) = \frac 4{\sqrt 3} \Im \left(\frac {\ln 3}2 + \ln i \right) = \frac 4{\sqrt 3} \Im \left(\frac {\ln 3}2 + \ln e^{\frac \pi 2i} \right) = \frac 4{\sqrt 3} \Im \left(\frac {\ln 3}2 + \frac \pi 2i \right) \\ & = \frac \pi {2\sqrt 3} \end{aligned}

Therefore, a + b = 2 + 3 = 5 a+b = 2+ 3 =\boxed{5} .

Aaghaz Mahajan
May 3, 2018

It is simply the integral from 0 to 1 of the function (1-x^4)/(1-x^6).........

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...