1 − 5 1 + 7 1 − 1 1 1 + 1 3 1 − 1 7 1 + 1 9 1 − 2 3 1 + ⋯ = a b π
The equation above holds true for positive coprime integers a and b . Find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
It is simply the integral from 0 to 1 of the function (1-x^4)/(1-x^6).........
Problem Loading...
Note Loading...
Set Loading...
Let S = 1 − 5 1 + 7 1 − 1 1 1 + 1 3 1 − ⋯ . Consider the following Maclaurin series:
ln ( 1 − x 1 + x ) ln ( 1 − e 3 2 π i 1 + e 3 2 π i ) ℑ ( ln ( 1 − e 3 2 π i 1 + e 3 2 π i ) ) = 2 1 ( x + 3 x 3 + 5 x 5 + 7 x 7 + 9 x 9 + 1 1 x 1 1 + 1 3 x 1 3 + ⋯ ) = 2 1 ( ω + 3 ω 3 + 5 ω 5 + 7 ω 7 + 9 ω 9 + 1 1 ω 1 1 + 1 3 ω 1 3 + ⋯ ) = 2 1 ( ω + 3 1 + 5 ω 2 + 7 ω + 9 1 + 1 1 ω 2 + 1 3 ω + ⋯ ) = 2 1 ( sin 3 2 π + 3 sin 0 + 5 sin 3 4 π + 7 sin 3 2 π + 9 sin 0 + 1 1 sin 3 4 π + 1 3 sin 3 2 π + ⋯ ) = 2 1 ( 2 3 + 0 − 2 3 ⋅ 5 1 + 2 3 ⋅ 7 1 + 0 − 2 3 ⋅ 1 1 1 + 2 3 ⋅ 1 3 1 − ⋯ ) = 4 3 ( 1 − 5 1 + 7 1 − 1 1 1 + 1 3 1 − ⋯ ) = 4 3 S Putting x = ω = e 3 2 π i , 3rd root of unity. Taking the imaginary part.
Now, we have:
S = 3 4 ℑ ( ln ( 1 − e 3 2 π i 1 + e 3 2 π i ) ) = 3 4 ℑ ( ln ( 1 − 3 i 3 + 3 i ) ) = 3 4 ℑ ( ln ( ( 1 − 3 i ) ( 1 + 3 i ) ( 3 + 3 i ) ( 1 + 3 i ) ) ) = 3 4 ℑ ( ln ( 4 4 3 i ) ) = 3 4 ℑ ( 2 ln 3 + ln i ) = 3 4 ℑ ( 2 ln 3 + ln e 2 π i ) = 3 4 ℑ ( 2 ln 3 + 2 π i ) = 2 3 π
Therefore, a + b = 2 + 3 = 5 .