Sum till 89

What is the last digit of i = 1 89 i 33 \displaystyle \sum_{i=1}^{89} i^{33} ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 30, 2020

i = 1 89 i 33 j = 0 8 k = 0 9 ( 10 j + k ) 33 (mod 10) 9 k = 1 9 k 33 (mod 10) ( 10 1 ) ( k = 1 4 ( k 33 + ( 10 k ) 33 ) + 5 33 ) (mod 10) As a 33 + b 33 = ( a + b ) ( a 32 a 31 b + a 30 b 2 + b 32 ) ( k = 1 4 10 n = 0 32 k 32 n ( 10 k ) n + 5 33 ) (mod 10) 0 5 5 (mod 10) \begin{aligned} \sum_{i=1}^{89} i^{33} & \equiv \sum_{j=0}^8 \sum_{k=0}^9 (10j+k)^{33} \text{ (mod 10)} \\ & \equiv 9 \sum_{k=1}^9 k^{33} \text{ (mod 10)} \\ & \equiv (10-1)\left(\sum_{k=1}^4 \left(\blue{k^{33}+(10-k)^{33}}\right) + 5^{33} \right) \text{ (mod 10)} & \small \blue{\text{As }a^{33}+b^{33} = (a+b)\left(a^{32}-a^{31}b+a^{30}b^2 - \cdots + b^{32}\right)} \\ & \equiv -\left(\sum_{k=1}^4 \blue{10\sum_{n=0}^{32}k^{32-n}(10-k)^n} + 5^{33} \right) \text{ (mod 10)} \\ & \equiv - 0 - 5 \equiv \boxed 5 \text{ (mod 10)} \end{aligned}

Cantdo Math
May 1, 2020

Since ϕ ( 10 ) = 4 \phi(10)=4 and 33 = 4.8 + 1 33=4.8+1 .we have ,the sum= i = 1 89 i = 4005 = 5 m o d 10 \sum_{i=1}^{89} i =4005 =5\mod10 .

Vilakshan Gupta
Apr 29, 2020

Note that n 33 n m o d 10 n^{33} \equiv n \mod 10 .

Hence i = 1 89 i 33 i = 1 89 i m o d 10 89 × 90 2 m o d 10 = 5 \displaystyle \sum_{i=1}^{89} i^{33} \equiv \sum_{i=1}^{89} i\mod 10 \equiv \dfrac{89 \times 90}{2} \mod 10= \boxed{5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...