Sum Time!

Calculus Level 4

1 1 8 + 1 27 1 64 + 1 125 1 216 + 1 + 1 8 + 1 27 + 1 64 + 1 125 + 1 216 + \large \dfrac{1-\dfrac{1}{8}+\dfrac{1}{27}-\dfrac{1}{64}+\dfrac{1}{125}-\dfrac{1}{216}+\cdots}{1+\dfrac{1}{8}+\dfrac{1}{27}+\dfrac{1}{64}+\dfrac{1}{125}+\dfrac{1}{216}+\cdots}

If the ratio above can be written as a b \Large \frac{a}{b} where a \large a and b \large b are coprime integers. Find a × b \large a \times b .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akshat Sharda
Jan 8, 2016

S = ( 1 1 2 3 + 1 3 3 1 4 3 + 1 5 3 ) ( 1 + 1 2 3 + 1 3 3 + 1 4 3 + 1 5 3 + ) = n = 1 1 n 3 2 8 n = 1 1 n 3 n = 1 1 n 3 = n = 1 1 n 3 ( 1 1 4 ) n = 1 1 n 3 = 3 4 3 × 4 = 12 \begin{aligned} S & = \frac{\left( 1- \frac{1}{2^3}+\frac{1}{3^3}-\frac{1}{4^3}+\frac{1}{5^3}-\ldots\right)}{\left(1+ \frac{1}{2^3}+\frac{1}{3^3}+ \frac{1}{4^3}+\frac{1}{5^3}+\ldots \right)} \\ & =\frac{ \displaystyle \sum^{\infty}_{n=1}\frac{1}{n^3}-\frac{2}{8}\displaystyle \sum^{\infty}_{n=1}\frac{1}{n^3}}{\displaystyle \sum^{\infty}_{n=1}\frac{1}{n^3}} \\ & = \frac{ \displaystyle \sum^{\infty}_{n=1}\frac{1}{n^3}\left(1-\frac{1}{4}\right)}{ \displaystyle \sum^{\infty}_{n=1}\frac{1}{n^3}} \\ & = \frac{3}{4} \\ \Rightarrow 3×4 & = \boxed{12}\end{aligned}

How did you pass from the first step to the second one??

Esteban Vasquez Giraldo - 5 years, 5 months ago
Digvijay Singh
Jun 24, 2015

The Fraction can be re-written as n = 1 ( 1 ) n + 1 n 3 n = 1 1 n 3 \frac{\displaystyle \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^3}}{\Large \displaystyle \sum_{n=1}^\infty \frac{1}{n^3}}

Consider this series 1 + 1 2 3 1 3 3 + 1 4 3 -1+\frac{1}{2^3}-\frac{1}{3^3}+\frac{1}{4^3}-\cdots

To perform the analytic continuation, write ( 1 + 1 2 3 1 3 3 + 1 4 3 ) + ( 1 + 1 2 3 + 1 3 3 + ) \Bigg(-1+\frac{1}{2^3}-\frac{1}{3^3}+\frac{1}{4^3}-\cdots\Bigg)+\Bigg(1+\frac{1}{2^3}+\frac{1}{3^3}+\cdots\Bigg) = 2 ( 1 2 3 + 1 4 3 + 1 6 3 + ) =2\Bigg(\frac{1}{2^3}+\frac{1}{4^3}+\frac{1}{6^3}+\cdots\Bigg) = 2 1 3 ( 1 + 1 2 3 + 1 3 3 + 1 4 3 + ) =2^{1-3}\Bigg(1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\cdots \Bigg) Rewriting in the terms of Riemann Zeta Function, n = 1 ( 1 ) n n 3 + ζ ( 3 ) = 2 1 3 ζ ( 3 ) \displaystyle \sum_{n=1}^\infty \frac{(-1)^{n}}{n^3}+\zeta(3)=2^{1-3}\zeta(3) ζ ( 3 ) 1 4 ζ ( 3 ) = n = 1 ( 1 ) n n 3 \zeta(3)-\frac{1}{4}\zeta(3)=-\displaystyle \sum_{n=1}^\infty \frac{(-1)^{n}}{n^3} ( 1 1 4 ) ζ ( 3 ) = n = 1 ( 1 ) n + 1 n 3 \Bigg(1-\frac{1}{4}\Bigg)\zeta(3)=\displaystyle \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^3} Dividing both sides by ζ ( 3 ) \zeta(3) gives 3 4 = n = 1 ( 1 ) n + 1 n 3 ζ ( 3 ) \frac{3}{4}=\frac{\displaystyle \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^3}}{\zeta(3)} n = 1 ( 1 ) n + 1 n 3 n = 1 1 n 3 = 3 4 \frac{\displaystyle \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^3}}{\Large \displaystyle \sum_{n=1}^\infty \frac{1}{n^3}}=\frac{3}{4}

So, the answer is 3 × 4 = 12 3 \times 4=\boxed{12}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...