Adding Up A Lot Of Floors

Algebra Level 5

x + 1 100 + x + 2 100 + + x + 223 100 = 521 \left \lfloor x +\frac {1}{100} \right \rfloor + \left \lfloor x + \frac {2}{100} \right \rfloor + \cdots + \left \lfloor x + \frac {223} {100} \right \rfloor = 521

If x x is a real number satisfying the equation above, find 100 x \lfloor 100x\rfloor .

Notation : x \lfloor x \rfloor denotes the floor function .


Inspiration .


The answer is 175.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Akshat Sharda
Jan 26, 2016

S = x + 1 100 + x + 2 100 + + x + 223 100 = 521 = 3 ( x + 1 100 + x + 2 100 + + x + 23 100 ) + 2 ( x + 24 100 + x + 25 100 + + x + 100 100 ) = 521 100 23 × 2 = 375 x = x + { x } S = 223 x + 3 23 n = 1 { x } + n 100 + 2 m = 24 100 { x } + m 100 = 375 S = 375 , x = 375 223 = 1 3 n = 1 23 { x } + n 100 + 2 m = 24 100 { x } + m 100 = 375 223 = 152 \begin{aligned} S & = \left \lfloor x+\frac{1}{100} \right \rfloor + \left \lfloor x+\frac{2} {100} \right \rfloor +\ldots + \left \lfloor x+\frac{223}{100} \right \rfloor=521 \\ &= 3\left( \left \lfloor x+\frac{1}{100} \right \rfloor + \left \lfloor x+\frac{2}{100} \right \rfloor + \ldots +\left \lfloor x+\frac{23}{100} \right \rfloor \right)+2 \left( \left \lfloor x+\frac{24}{100} \right \rfloor + \left \lfloor x+\frac{25}{100} \right \rfloor + \ldots +\left \lfloor x+\frac{100}{100} \right \rfloor \right) =521-100-23×2=375 \\ & \Rightarrow x = \lfloor x\rfloor+ \{x\} \\ S & = 223\lfloor x\rfloor + 3 \displaystyle \sum^{23}{n=1} \left \lfloor \{x\}+\frac{n}{100} \right \rfloor +2 \displaystyle \sum^{100}_{m=24} \left \lfloor \{x\}+ \frac{m}{100} \right \rfloor =375 \\ S &=375, \quad \lfloor x\rfloor = \left \lfloor \frac{375}{223} \right \rfloor =1 \\ & \Rightarrow 3 \displaystyle \sum^{23}_{n=1} \left \lfloor \{x\}+\frac{n}{100} \right \rfloor +2 \displaystyle \sum^{100}_{m=24} \left \lfloor \{x\}+ \frac{m}{100} \right \rfloor = 375-223 = 152 \end{aligned}

Now we can obviously see that any term of ( x + n 100 ) n = 1 23 \left( \left \lfloor x+\frac{n}{100} \right \rfloor \right)^{23}_{n=1} would be smaller than any term of ( x + n 100 ) n = 24 100 \left(\left \lfloor x+\frac{n}{100} \right \rfloor \right)^{100}_{n=24} , so 152 152 would coming from 2 m = 24 100 { x } + m 100 2 \displaystyle \sum^{100}_{m=24} \left \lfloor \{x\}+ \frac{m}{100} \right \rfloor and note that the terms can't be greater than 1 1 . If all the terms equal 1 , then 2 m = 24 100 { x } + m 100 = 154 2 \displaystyle \sum^{100}_{m=24} \left \lfloor \{x\}+ \frac{m}{100} \right \rfloor =154 , so to decrease 2 2 and get 152 152 as our result, all the terms of ( { x } + m 100 ) m = 25 100 \left( \left \lfloor \{x\} +\frac{m}{100} \right \rfloor \right)^{100}_{m=25} must be equal to 1 1 .

{ x } + 25 100 1 { x } 0.75 x = x + { x } = 1 + 0.75 = 1.75 100 x = 175 \begin{aligned} \therefore \{x\} + \frac{25}{100} & \geq 1 \\ \{x\} & \geq 0.75 \\ x & =\lfloor x \rfloor +\{x\}=1+0.75 =1.75 \\ \Rightarrow \lfloor 100x \rfloor & = \boxed{175} \end{aligned}

I think there is a typo in the fourth and third last lines. You have used greater than or equal to symbol instead of equal to.

Anupam Nayak - 5 years, 4 months ago
Nabil Maani
Jan 28, 2016

Sarthak Behera
Jan 28, 2016

Suppose 'k' of them be 1,100 of them be 2 and '123-k' be 3 So, k+200+3(123-k)=521 Solving we get k=24. So,[x+24/100]=1 but [x+25/100]=2 Thus, [100x]={2-(1/4)}100=175(ans.)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...