Sum to infinity

Algebra Level 4

z = 1 z 3 3 z 2 + z 5 z 5 2 z 4 2 z 3 4 z 2 5 z = ? \displaystyle\sum_{z=1}^{\infty}\frac{z^3-3z^2+z-5}{z^5-2z^4-2z^3-4z^2-5z}=\,?

  • Enter 999 if you find the series Divergent.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jan 17, 2016

z 5 2 z 4 2 z 3 4 z 2 5 z z^5-2z^4-2z^3-4z^2-5z = ( z 3 3 z 2 + z 5 ) ( z + 1 ) z =(z^3-3z^2+z-5)(z+1)z Given expression simplifies to: z = 1 1 z ( z + 1 ) (Telescopic Series) \displaystyle\sum_{z=1}^{\infty}\frac{1}{z(z+1)} \quad\quad \small\color{#20A900}{\text{(Telescopic Series)}} = 1 \quad\quad\quad\quad \Large{=1}

Zeeshan Ali
Jan 27, 2016

Problem:

z = 1 z 3 3 z 2 + z 5 z 5 2 z 4 2 z 3 4 z 2 5 z = ? \displaystyle\sum_{z=1}^{\infty}\frac{z^3-3z^2+z-5}{z^5-2z^4-2z^3-4z^2-5z}=\,?

Solution:

z = 1 z 3 3 z 2 + z 5 z 5 2 z 4 2 z 3 4 z 2 5 z \displaystyle\sum_{z=1}^{\infty}\frac{z^3-3z^2+z-5}{z^5-2z^4-2z^3-4z^2-5z}

= z = 1 z 3 3 z 2 + z 5 z ( z 4 2 z 3 2 z 2 4 z 5 ) = \, \displaystyle\sum_{z=1}^{\infty}\frac{z^3-3z^2+z-5}{z(z^4-2z^3-2z^2-4z-5)}


For z = 1 z=-1 , we have:

z 4 2 z 3 2 z 2 4 z 5 = ( 1 ) 4 2 ( 1 ) 3 2 ( 1 ) 2 4 ( 1 ) 5 = 1 + 2 2 + 4 5 = 0 z^4-2z^3-2z^2-4z-5 \, = \, (-1)^4-2(-1)^3-2(-1)^2-4(-1)-5 \, = \, 1+2-2+4-5 \, = \, 0 .

Therefore ( z + 1 z+1 ) is a factor of z 4 2 z 3 2 z 2 4 z 5 z^4-2z^3-2z^2-4z-5 such that:

z 4 2 z 3 2 z 2 4 z 5 = ( z + 1 ) ( z 3 3 z 2 + z 5 ) z^4-2z^3-2z^2-4z-5=(z+1)(z^3-3z^2+z-5)


= z = 1 z 3 3 z 2 + z 5 z ( z + 1 ) ( z 3 3 z 2 + z 5 ) = \, \displaystyle\sum_{z=1}^{\infty}\frac{z^3-3z^2+z-5}{z(z+1)(z^3-3z^2+z-5)}

= z = 1 1 z ( z + 1 ) (A telescoping series of course) = \, \displaystyle\sum_{z=1}^{\infty}\frac{1}{z(z+1)} \, \text{(A telescoping series of course)}

= z = 1 z + 1 z z ( z + 1 ) = \, \displaystyle\sum_{z=1}^{\infty}\frac{z+1-z}{z(z+1)}

= z = 1 z + 1 z ( z + 1 ) z z ( z + 1 ) = \, \displaystyle\sum_{z=1}^{\infty}\frac{z+1}{z(z+1)}-\frac{z}{z(z+1)}

= z = 1 1 z 1 z + 1 = \, \displaystyle\sum_{z=1}^{\infty}\frac{1}{z}-\frac{1}{z+1}


Because the given telescoping series to n n terms can be given as: z = 1 n 1 z ( z + 1 ) = 1 1 1 n + 1 . \sum_{z=1}^n \frac{1}{z(z+1) } = \frac{1}{1} - \frac{ 1}{n+1}.


= 1 1 lim z 1 z + 1 = 01 = \, \frac{1}{1}-\displaystyle\lim_{z\rightarrow\infty}{\frac{1}{z+1}} \, = \, 01

Conclusive Result:

z = 1 z 3 3 z 2 + z 5 z 5 2 z 4 2 z 3 4 z 2 5 z = 01 \displaystyle\sum_{z=1}^{\infty}\frac{z^3-3z^2+z-5}{z^5-2z^4-2z^3-4z^2-5z}=\,\boxed{01}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...