Sum to infinity

Calculus Level 3

1 + 2 3 2 ! + 3 3 3 ! + 4 3 4 ! + = k × e \large 1+\frac{2^3}{2!}+\frac{3^3}{3!}+\frac{4^3}{4!}+\cdots = k \times e

What is k k ?

Notation: e 2.71828 e \approx 2.71828 denotes the Euler's number .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Anubhav Tyagi
Dec 22, 2016

e x = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + x 4 4 ! + Differentiating w.r.t x on both sides e x = 1 1 ! + 2 x 2 ! + 3 x 2 3 ! + 4 x 3 4 ! + Multiplying both sides by x x e x = x 1 ! + 2 x 2 2 ! + 3 x 3 3 ! + 4 x 4 4 ! + Again differentiating w.r.t x on both sides e x ( x + 1 ) = 1 1 ! + 2 2 x 2 ! + 3 2 x 2 3 ! + 4 2 x 3 4 ! + Again Multiplying both sides by x x ( x + 1 ) e x = x 1 ! + 2 2 x 2 2 ! + 3 2 x 3 3 ! + 4 2 x 4 4 ! + Again differentiating w.r.t x on both sides ( x 2 + 3 x + 1 ) e x = 1 1 ! + 2 3 x 2 ! + 3 3 x 2 3 ! + 4 3 x 3 4 ! + Put x=1 , we get 5 e = 1 + 2 3 2 ! + 3 3 3 ! + 4 3 4 ! + \begin{aligned} &e^x = 1+ \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots\cdots \\ &\text{Differentiating w.r.t x on both sides}\\ &e^x = \frac{1}{1!} + \frac{2x}{2!} + \frac{3x^2}{3!} + \frac{4x^3}{4!} + \cdots\cdots \\ &\text{Multiplying both sides by x }\\ &xe^x = \frac{x}{1!} + \frac{2x^2}{2!} + \frac{3x^3}{3!} + \frac{4x^4}{4!} + \cdots\cdots \\ &\text{Again differentiating w.r.t x on both sides}\\ &e^x(x+1) = \frac{1}{1!} + \frac{2^2x}{2!} + \frac{3^2x^2}{3!} + \frac{4^2x^3}{4!} + \cdots\cdots \\ &\text{Again Multiplying both sides by x }\\ &x(x+1)e^x = \frac{x}{1!} + \frac{2^2x^2}{2!} + \frac{3^2x^3}{3!} + \frac{4^2x^4}{4!} + \cdots\cdots \\ &\text{Again differentiating w.r.t x on both sides}\\ &(x^2 + 3x +1)e^x = \frac{1}{1!} + \frac{2^3x}{2!} + \frac{3^3x^2}{3!} + \frac{4^3x^3}{4!} + \cdots\cdots \\ &\text{Put x=1 , we get}\\ & 5e = \large 1+\frac{2^3}{2!}+\frac{3^3}{3!}+\frac{4^3}{4!}+\cdots \\ \end{aligned}

@Calvin Lin , @Pi Han Goh - check the solution

Anubhav Tyagi - 4 years, 5 months ago

Log in to reply

Wonderfully written. This is the way that I would have solved it....

Pi Han Goh - 4 years, 5 months ago

Log in to reply

Thanks . All credit goes to you.

Anubhav Tyagi - 4 years, 5 months ago

nicely done i did the way sir @Chew-Seong Cheong did

Prakhar Bindal - 4 years, 5 months ago

super solution

Prabhav Kumar Singh - 4 years, 4 months ago

Log in to reply

Thanks bro

Anubhav Tyagi - 4 years, 4 months ago

I simply guessed 4 without analysis but calculated to be 5.

Lu Chee Ket - 4 years, 4 months ago
Chew-Seong Cheong
Dec 21, 2016

S = 1 + 2 3 2 ! + 3 3 3 ! + 4 3 4 ! + = n = 1 n 3 n ! = n = 0 ( n + 1 ) 3 ( n + 1 ) ! = n = 0 ( n + 1 ) 2 n ! = n = 0 n 2 + 2 n + 1 n ! = 1 0 ! n = 0 + 4 1 ! n = 1 + n = 2 n ( n 1 ) + 3 n + 1 n ! = 5 + n = 2 ( 1 ( n 2 ) ! + 3 ( n 1 ) ! + 1 n ! ) = 5 + n = 0 1 n ! + 3 n = 1 1 n ! + n = 2 1 n ! = 5 + n = 0 1 n ! + 3 ( n = 0 1 n ! 1 0 ! ) + n = 0 1 n ! 1 0 ! 1 1 ! = 5 n = 0 1 n ! = 5 e \begin{aligned} S & = 1 + \frac {2^3}{2!} + \frac {3^3}{3!} + \frac {4^3}{4!} + \cdots \\ & = \sum_{\color{#3D99F6}n=1}^\infty \frac {n^3}{n!} \\ & = \sum_{\color{#D61F06}n=0}^\infty \frac {(n+1)^3}{(n+1)!} \\ & = \sum_{\color{#D61F06}n=0}^\infty \frac {(n+1)^2}{n!} \\ & = \sum_{\color{#D61F06}n=0}^\infty \frac {n^2+2n+1}{n!} \\ & = \underbrace{\frac 1{0!}}_{n=0} + \underbrace{\frac 4{1!}}_{n=1} + \sum_{\color{#3D99F6}n=2}^\infty \frac {n(n-1)+3n+1}{n!} \\ & = 5 + \sum_{\color{#20A900}n=2}^\infty \left(\frac 1{(n-2)!} + \frac 3{(n-1)!} + \frac 1{n!} \right) \\ & = 5 + \sum_{\color{#D61F06}n=0}^\infty \frac 1{n!} + 3 \sum_{\color{#3D99F6}n=1}^\infty \frac 1{n!} + \sum_{\color{#20A900}n=2}^\infty \frac 1{n!} \\ & = 5 + \sum_{\color{#D61F06}n=0}^\infty \frac 1{n!} + 3 \left(\sum_{\color{#D61F06}n=0}^\infty \frac 1{n!} - \frac 1{0!} \right) + \sum_{\color{#D61F06}n=0}^\infty \frac 1{n!} - \frac 1{0!} - \frac 1{1!} \\ & = 5 \sum_{\color{#D61F06}n=0}^\infty \frac 1{n!} = \boxed{5e} \end{aligned}

Alternate approach could be :

e x = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + e^{x} = 1 + \frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots

Differentiate both sides wrt to x,and then multiply by x,

x e x = x + 2 x 2 2 ! + 3 x 3 3 ! + xe^x = x+\frac{2x^2}{2!}+\frac{3x^3}{3!}+\cdots

Observe that if we differentiate both sides again wrt to x, we will get 2 2 , 3 2 , 4 2 , . . . . 2^2,3^2,4^2,.... as coefficients on numerator . Thus if we again repeat the above procedure,ie, by again multiplying by x and differentiating,we will get cubes in the numerator,and then by putting x =1,we will get the required result.

Harsh Shrivastava - 4 years, 5 months ago

Duplicate of this

Wen Z - 4 years, 5 months ago

I Did the same way!

Prakhar Bindal - 4 years, 5 months ago
Naren Bhandari
Oct 31, 2017

n = 1 n 3 n ! = n = 1 n 2 1 + 1 ( n 1 ) ! = n = 1 ( n + 1 ( n 2 ) ! + 1 ( n 1 ) ! ) \displaystyle\sum_{n=1}^{\infty}\frac {n^3}{n!} = \displaystyle\sum_{n=1}^{\infty}\frac {n^2-1+1}{(n-1)!} =\displaystyle\sum_{n=1}^{\infty}\left (\frac {n+1}{(n-2)!} + \frac {1}{(n-1)!}\right)

= n = 1 ( 1 ( n 3 ) ! + 3 ( n 2 ) ! + 1 ( n 1 ) ! ) = 5 e =\displaystyle\sum_{n=1}^{\infty}\left (\frac{1}{(n-3)!} + \frac {3}{(n-2)!} + \frac {1}{(n-1)!}\right) = 5e

Hence k = 5 k=5 .

Jun Arro Estrella
Jan 12, 2017

Bell numbers

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...