Sum to infinity

1 ( 1 8 ) + ( 1 8 3 16 ) ( 1 8 3 16 5 24 ) + ( 1 8 3 16 5 24 7 32 ) = ? 1 - \left( \dfrac 18 \right) + \left( \dfrac 18 \cdot \dfrac{3}{16} \right) - \left( \dfrac 18 \cdot \dfrac{3}{16} \cdot \dfrac{5}{24} \right) + \left( \dfrac 18 \cdot \dfrac{3}{16} \cdot \dfrac{5}{24} \cdot \dfrac{7}{32} \right) - \cdots = \, ?

8 5 \dfrac{8}{\sqrt{5}} 2 5 \dfrac{2}{\sqrt{5}} 4 5 \dfrac{4}{\sqrt{5}} 2 2 5 \dfrac{2\sqrt{2}}{\sqrt{5}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki .- fractional binomial theorem

The power series ("McLaurin series" in C \mathbb{C} ) or analytic expansion of ( 1 + 2 x ) 1 2 = 1 1 + 2 x (1 + 2x)^{\frac{-1}{2}} = \frac{1}{\sqrt{1 + 2x}} with x < 1 / 2 |x| < 1/2 is : k = 0 ( 1 / 2 k ) ( 2 x ) k = 1 + ( 1 / 2 ) ( 2 x ) + ( 1 / 2 ) ( 3 / 2 ) 2 ! ( 2 x ) 2 + ( 1 / 2 ) ( 3 / 2 ) ( 5 / 2 ) 3 ! ( 2 x ) 3 + . . . = \displaystyle \sum_{k = 0}^{\infty} {-1/2 \choose k} (2x)^k = 1 + (-1/2)\cdot(2x) + \frac{(-1/2)\cdot (-3/2)}{2!} (2x)^2 + \frac{(-1/2)\cdot(-3/2)\cdot(-5/2)}{3!}(2x)^3 +... = Now substituing x = 1 / 8 x = 1/8 we get 1 + ( 1 / 2 ) ( 1 / 4 ) + 1 3 2 ! 4 16 1 3 5 3 ! 8 64 + . . . = 1 + (-1/2)\cdot (1/4) + \frac{1\cdot 3}{2! \cdot 4 \cdot 16} - \frac{1\cdot 3\cdot 5}{3! \cdot 8 \cdot 64} + ... = = 1 1 / 8 + 1 3 8 16 1 3 5 8 16 24 + . . . = = 1 - 1/8 + \frac{1\cdot 3}{ 8 \cdot 16} - \frac{1\cdot 3\cdot 5}{8 \cdot 16 \cdot 24} + ... = = ( 1 + 2 1 8 ) 1 2 = 1 1 + 1 4 = 2 5 = (1 + 2\cdot \frac{1}{8})^{\frac{-1}{2}} = \frac{1}{\sqrt{1 + \frac{1}{4}}} = \frac{2}{\sqrt{5}}

Details.-

8 = 8 1 1 ! , 8 16 = 8 2 2 ! , 8 16 24 = 8 3 3 ! . . . 8 = 8^1 \cdot 1!, \quad \\ 8 \cdot 16 = 8^2 \cdot 2!, \quad \\8 \cdot 16 \cdot 24 = 8^3 \cdot 3!...

if α C \alpha \in \mathbb{C} and n Z + = { 1 , 2 , 3 , . . . } n \in \mathbb{Z}^+ = \{1,2,3,...\} then ( α n ) = α ( α 1 ) ( α n + 1 ) n ! {\alpha \choose n} = \frac{\alpha \cdot (\alpha - 1) \cdot \cdot \cdot (\alpha - n + 1)}{n!} and ( α 0 ) = 1 {\alpha \choose 0} = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...