Sum up the series!

1 + 1 3 + 1 3 3 6 + 1 3 5 3 6 9 + = Y 1 + \frac{1}{3} + \frac{1\cdot 3}{3\cdot 6} + \frac{1\cdot 3\cdot 5}{3\cdot 6\cdot 9} + \cdots = \sqrt{Y}

Y Y is given as above, find 5 Y + 1 5Y + 1 .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki .- fractional binomial theorem

The power series of ( 1 2 x ) 1 2 = 1 1 2 x (1 - 2x)^{\frac{-1}{2}} = \frac{1}{\sqrt{1 - 2x}} with x < 1 / 2 |x| < 1/2 is : 1 + x + 3 x 2 2 + 5 x 3 2 + 35 x 4 8 + 63 x 5 8 + o ( x 5 ) = k = 0 ( 1 / 2 k ) ( 2 x ) k = 1 + x + \frac{3x^2}{2} + \frac{5x^3}{2} + \frac{35x^4}{8} + \frac{63x^5}{8} + o(x^5) = \displaystyle \sum_{k = 0}^{\infty} {-1/2 \choose k} (-2x)^k = = 1 + ( 1 / 2 ) ( 2 x ) + ( 1 / 2 ) ( 3 / 2 ) 2 ! ( 2 x ) 2 + ( 1 / 2 ) ( 3 / 2 ) ( 5 / 2 ) 3 ! ( 2 x ) 3 + . . . . =1 + (-1/2)\cdot(-2x) + \frac{(-1/2)\cdot (-3/2)}{2!} (-2x)^2 + \frac{(-1/2)\cdot(-3/2)\cdot(-5/2)}{3!}(-2x)^3 +.... Now substituing x = 1 / 3 x = 1/3 we get 1 + 1 3 + 1 3 3 6 + 1 3 5 3 6 9 + . . . = 1 + \frac{1}{3} + \frac{1\cdot 3}{3\cdot 6} + \frac{1\cdot 3\cdot 5}{3\cdot 6\cdot 9} + ... = ( 1 2 1 3 ) 1 2 = 1 1 2 1 3 = 3 (1 - 2\cdot \frac{1}{3})^{\frac{-1}{2}} = \frac{1}{\sqrt{1 - 2\cdot\frac{1}{3}}} = \sqrt{3} Y = 3 5 Y + 1 = 16 Y = 3 \Rightarrow 5Y + 1 = 16

Details.-

3 = 3 1 1 ! , 3 6 = 3 2 2 ! , 3 6 9 = 3 3 3 ! . . . 3 = 3^1 \cdot 1!, \quad \\ 3 \cdot 6 = 3^2 \cdot 2!, \quad \\3 \cdot 6 \cdot 9 = 3^3 \cdot 3!...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...