Find the sum of the following series :-
( C 0 − 2 2 × C 1 + 3 2 × C 2 − . . . . . . . + ( − 1 ) n ( n + 1 ) 2 × C n ) where n>2.
D e t a i l s a n d A s s u m p t i o n s
C r = n C r
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Well u can just evaluate by putting any value of n>2
Well......simple JEE approach by keeping n=3
Problem Loading...
Note Loading...
Set Loading...
⇒ ( 1 − x ) n = C 0 − C 1 x + C 2 x 2 − C 3 x 3 + . . . . ( − 1 ) n C n x n ⇒ x ( 1 − x ) n = C 0 x − C 1 x 2 + C 2 x 3 − C 3 x 4 + . . . . ( − 1 ) n C n x n + 1 D i f f e r e n t i a t e b o t h s i d e s w . r . t x , ⇒ ( 1 − x ) n + n x ( 1 − x ) n − 1 = C 0 − 2 C 1 x + 3 C 2 x 2 − 4 C 3 x 3 + . . . . ( − 1 ) n ( n + 1 ) C n x n ⇒ x ( ( 1 − x ) n + n x ( 1 − x ) n − 1 ) = C 0 x − 2 C 1 x 2 + 3 C 2 x 3 − 4 C 3 x 4 + . . . . ( − 1 ) n ( n + 1 ) C n x n + 1 A g a i n d i f f e r e n t i a t e b o t h s i d e s w . r . t x , ⇒ ( 1 − x ) n + n x ( 1 − x ) n − 1 + 2 n x ( 1 − x ) n − 1 + x 2 n ( n − 1 ) ( 1 − x ) n − 2 = C 0 − 2 2 C 1 x + 3 2 C 2 x 2 − 4 2 C 3 x 3 + . . . . ( − 1 ) n ( n + 1 ) 2 C n x n P u t t i n g x = 1 , w e g e t r e q u i r e d s e r i e s i n R . H . S a n d 0 i n L . H . S , H e n c e , a n s w e r i s 0 .