Sum up these coefficients!

Find the sum of the following series :-

( C 0 2 2 × C 1 + 3 2 × C 2 . . . . . . . + ( 1 ) n ( n + 1 ) 2 × C n ) (^{ }{ C }_{ 0 }-{ 2 }^{ 2 }\times ^{ }{ C }_{ 1 }+{ 3 }^{ 2 }\times ^{ }{ C }_{ 2 }-.......+{ (-1 })^{ n }({ n+1 })^{ 2 }\times ^{ }{ C }_{ n }) where n>2.

D e t a i l s a n d A s s u m p t i o n s Details\quad and\quad Assumptions

C r = n C r ^{ }{ C }_{ r }=^{ n }{ C }_{ r }


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Yash Choudhary
Mar 1, 2015

( 1 x ) n = C 0 C 1 x + C 2 x 2 C 3 x 3 + . . . . ( 1 ) n C n x n x ( 1 x ) n = C 0 x C 1 x 2 + C 2 x 3 C 3 x 4 + . . . . ( 1 ) n C n x n + 1 D i f f e r e n t i a t e b o t h s i d e s w . r . t x , ( 1 x ) n + n x ( 1 x ) n 1 = C 0 2 C 1 x + 3 C 2 x 2 4 C 3 x 3 + . . . . ( 1 ) n ( n + 1 ) C n x n x ( ( 1 x ) n + n x ( 1 x ) n 1 ) = C 0 x 2 C 1 x 2 + 3 C 2 x 3 4 C 3 x 4 + . . . . ( 1 ) n ( n + 1 ) C n x n + 1 A g a i n d i f f e r e n t i a t e b o t h s i d e s w . r . t x , ( 1 x ) n + n x ( 1 x ) n 1 + 2 n x ( 1 x ) n 1 + x 2 n ( n 1 ) ( 1 x ) n 2 = C 0 2 2 C 1 x + 3 2 C 2 x 2 4 2 C 3 x 3 + . . . . ( 1 ) n ( n + 1 ) 2 C n x n P u t t i n g x = 1 , w e g e t r e q u i r e d s e r i e s i n R . H . S a n d 0 i n L . H . S , H e n c e , a n s w e r i s 0 . \Rightarrow \quad { (1-x) }^{ n }={ C }_{ 0 }-C_{ 1 }x+{ C }_{ 2 }{ x }^{ 2 }-{ { C }_{ 3 }x }^{ 3 }+....{ (-1) }^{ n }{ C }_{ n }{ x }^{ n }\\ \Rightarrow \quad x{ (1-x) }^{ n }={ C }_{ 0 }x-C_{ 1 }{ x }^{ 2 }+{ C }_{ 2 }{ x }^{ 3 }-{ { C }_{ 3 }x }^{ 4 }+....{ (-1) }^{ n }{ C }_{ n }{ x }^{ n+1 }\\ Differentiate\quad both\quad sides\quad w.r.t\quad x,\\ \Rightarrow \quad { (1-x) }^{ n }+nx{ (1-x) }^{ n-1 }={ C }_{ 0 }-2C_{ 1 }x+3{ C }_{ 2 }{ x }^{ 2 }-4{ { C }_{ 3 }x }^{ 3 }+....{ (-1) }^{ n }(n+1){ C }_{ n }{ x }^{ n }\\ \Rightarrow \quad x({ (1-x) }^{ n }+nx{ (1-x) }^{ n-1 })={ C }_{ 0 }x-2C_{ 1 }{ x }^{ 2 }+3{ C }_{ 2 }{ x }^{ 3 }-4{ { C }_{ 3 }x }^{ 4 }+....{ (-1) }^{ n }(n+1){ C }_{ n }{ x }^{ n+1 }\\ Again\quad differentiate\quad both\quad sides\quad w.r.t\quad x,\\ \Rightarrow \quad { (1-x) }^{ n }+nx{ (1-x) }^{ n-1 }+2nx{ (1-x) }^{ n-1 }+{ x }^{ 2 }n(n-1){ (1-x) }^{ n-2 }={ C }_{ 0 }-{ 2 }^{ 2 }C_{ 1 }x+{ 3 }^{ 2 }{ C }_{ 2 }{ x }^{ 2 }-{ 4 }^{ 2 }{ { C }_{ 3 }x }^{ 3 }+....{ (-1) }^{ n }{ (n+1) }^{ 2 }{ C }_{ n }{ x }^{ n }\\ Putting\quad x=1,\quad we\quad get\quad required\quad series\quad in\quad R.H.S\quad and\quad 0\quad in\quad L.H.S,\\ Hence,\quad answer\quad is\quad \boxed { 0 } .

Rohan Bansal
Mar 1, 2015

Well u can just evaluate by putting any value of n>2

Aaghaz Mahajan
Apr 24, 2018

Well......simple JEE approach by keeping n=3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...