Sum up this trigonometric function, if you can!!

Algebra Level 5

If the value of r = 1 100 tan 2 r 1 cos 2 r = tan 4 n tan 1 \sum _{ r=1 }^{ 100 }{ \frac { \tan\quad { 2 }^{ r-1 } }{ \cos\quad { 2 }^{ r } } } =\quad \tan\quad { 4 }^{ n }\quad -\quad \tan\quad 1 , find n, where 'n' is a natural number.


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

U Z
Nov 9, 2014

t a n ( 2 r 2 ) c o s ( 2 r ) \frac{tan(\frac{2^{r}}{2})}{cos(2^{r})}

Let 2 r = x 2^{r} = x

s i n ( x 2 ) c o s ( x 2 ) c o s x = s i n ( x x 2 ) c o s ( x 2 ) c o s x \frac{sin(\frac{x}{2})}{cos(\frac{x}{2})cosx} =\frac{sin(x - \frac{x}{2})}{cos(\frac{x}{2})cosx}

s i n x c o s ( x 2 ) c o s x s i n ( x 2 ) c o s ( x 2 ) c o s x \frac{sinxcos(\frac{x}{2}) - cosxsin(\frac{x}{2})}{cos(\frac{x}{2})cosx}

= t a n x t a n x 2 = tanx - tan\frac{x}{2}

= r = 1 100 t a n 2 r t a n 2 r 1 = \sum_{r = 1}^{100} tan2^{r} - tan2^{r - 1}

= t a n 2 t a n 1 + t a n 4 t a n 2 + . . . . . . . . . . . . . . . . . . + t a n 2 100 t a n 2 99 = tan2 - tan1 + tan4 - tan2 + .................. + tan2^{100} - tan2^{99}

= t a n 2 100 t a n 1 = tan2^{100} - tan1

= t a n 4 50 t a n 1 = tan4^{50} - tan1

well done,Megh

Ayush Verma - 6 years, 7 months ago

Log in to reply

Thank you sir

U Z - 6 years, 7 months ago

Also splved by Taylor and Maclaurin series But these method is very easy

harsh soni - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...