Find there sum of the following to infinity
3 4 + 2 1 8 + 9 1 1 2 + 2 7 3 1 6 + 6 5 1 2 0 + . . . . . . . . . . . . . . . . .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This method is known as Telescoping Series
did the same way
nice solution
Moderate telescoping series.Good one for begginers.
Problem Loading...
Note Loading...
Set Loading...
We\quad can\quad write\quad this\quad as:\\ \Rightarrow \frac { 4(1) }{ 1.3 } +\frac { 4(2) }{ 3.7 } +\frac { 4(3) }{ 7.13 } +\frac { 4(4) }{ 13.21 } +\frac { 4(5) }{ 21.31 } +......\infty \\ let\quad S=1+3+7+13+21+....{ .......T. }_{ n }\quad \longrightarrow 1\\ \quad \quad S=\quad \quad 1+3+7+13+............+{ T }_{ n }\longrightarrow 2\\ by\quad 1-2\\ { T }_{ n }=1+(2+4+6+8+10.........(n-1))\\ { T }_{ n }={ n }^{ 2 }-n+1\\ \\ let\quad k=3+7+13+21+31+.........K_{ n }\longrightarrow 3\\ \quad \quad k=\quad \quad 3+7+13+21+..........+K_{ n }\longrightarrow 4\\ by\quad 3-4\\ K_{ n }=3+(4+6+8+10+.......(n-1))\\ K_{ n }={ n }^{ 2 }+n+1\\ \\ \therefore \quad General\quad Term\quad =\quad \frac { 4n }{ ({ n }^{ 2 }-n+1)({ n }^{ 2 }+n+1) } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 2\left[ \frac { 1 }{ { n }^{ 2 }-n+1 } -\frac { 1 }{ { n }^{ 2 }+n+1 } \right] \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \quad 2\left[ \frac { 1 }{ 1 } -\frac { 1 }{ 3 } +\frac { 1 }{ 3 } -......... \right] \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 2\\ \\ \quad \quad \quad \quad