If k = 1 ∑ 2 0 1 5 cot − 1 ( 2 k 2 ) = cot − 1 ( b a ) , where a and b are positive coprime integers, then find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Perfect Solution. Did the exact same way.
And just to add another way telescoping that -
cot − 1 ( 2 k 2 ) = tan − 1 ( 4 k 2 2 ) = tan − 1 ( 1 + ( 4 k 2 − 1 ) 2 ) = tan − 1 ( 1 + ( 2 k + 1 ) ( 2 k − 1 ) ( 2 k + 1 ) − ( 2 k − 1 ) ) = tan − 1 ( 2 k + 1 ) − tan − 1 ( 2 k − 1 )
Log in to reply
Nice. So we end up with
tan − 1 ( 4 0 3 1 ) − tan − 1 ( 1 ) =
tan − 1 ( 1 + 4 0 3 1 4 0 3 1 − 1 ) = tan − 1 ( 2 0 1 6 2 0 1 5 ) = cot − 1 ( 2 0 1 5 2 0 1 6 ) .
I actually prefer your way of telescoping. :)
cot^-1 (2k^2) = tan^-1 (1/2k^2)= tan^-1 (2k+1) -tan^-1 (2k-1) therefore the summation becomes , tan^-1 (4031) -tan^-1 (1) =.......
Problem Loading...
Note Loading...
Set Loading...
Note that cot − 1 ( 2 k 2 ) = cot − 1 ( 1 + k 1 ) − cot − 1 ( 1 + k − 1 1 ) .
This follows from the identity cot − 1 ( a ) − cot − 1 ( b ) = cot − 1 ( b − a a b + 1 ) .
So we end up with a telescoping series with only
− cot − 1 ( ∞ ) + cot − 1 ( 1 + 2 0 1 5 1 ) = 0 + cot − 1 ( 2 0 1 5 2 0 1 6 )
remaining. Thus a + b = 2 0 1 6 + 2 0 1 5 = 4 0 3 1 .