Summation

Algebra Level 3

S = 1 1 + 1 2 + 1 4 + 2 1 + 2 2 + 2 4 + 3 1 + 3 2 + 3 4 + + 99 1 + 9 9 2 + 9 9 4 S=\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+\cdots +\frac{99}{1+99^{2}+99^{4}}

Then S S lies between?

0.49 and 0.50 0.46 and 0.47 0.48 and 0.49 0.47 and 0.48

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zico Quintina
May 10, 2018

We write S = n = 1 99 t n S=\displaystyle\sum_{n=1}^{99} t_n , where t n = n n 4 + n 2 + 1 t_n = \dfrac{n}{n^4 + n^2 + 1} . Then

t n = n n 4 + n 2 + 1 = n n 4 + 2 n 2 + 1 n 2 = n ( n 2 + 1 ) 2 n 2 = n ( n 2 n + 1 ) ( n 2 + n + 1 ) = 1 2 ( 1 n 2 n + 1 1 n 2 + n + 1 ) \begin{aligned} t_n &= \dfrac{n}{n^4 + n^2 + 1} \\ \\ &= \dfrac{n}{n^4 + 2n^2 + 1 - n^2} \\ \\ &= \dfrac{n}{(n^2 + 1)^2 - n^2} \\ \\ &= \dfrac{n}{(n^2 - n + 1)(n^2 + n + 1)} \\ \\ &= \dfrac{1}{2} \left( \dfrac{1}{n^2 - n + 1} - \dfrac{1}{n^2 + n + 1} \right) \end{aligned}

Let a n = 1 n 2 n + 1 \ a_n = \dfrac{1}{n^2 - n + 1} \ and b n = 1 n 2 + n + 1 \ b_n = \dfrac{1}{n^2 + n + 1} , so that t n = 1 2 ( a n b n ) \ t_n = \dfrac{1}{2} (a_n - b_n) . Consider a n + 1 \ a_{n+1} .

a n + 1 = 1 ( n + 1 ) 2 ( n + 1 ) + 1 = 1 n 2 + 2 n + 1 n 1 + 1 = 1 n 2 + n + 1 = b n \begin{aligned} a_{n+1} &= \dfrac{1}{(n + 1)^2 - (n + 1) + 1} \\ \\ &= \dfrac{1}{n^2 + 2n + 1 - n - 1 + 1} \\ \\ &= \dfrac{1}{n^2 + n + 1} \\ \\ \\ &= b_n \end{aligned}

which means that every - b k \text{-}b_k will cancel every a k + 1 a_{k+1} . Thus we have

S = t 1 + t 2 + t 3 + . . . . + t 98 + t 99 = 1 2 ( a 1 b 1 ) + 1 2 ( a 2 b 2 ) + 1 2 ( a 3 b 3 ) + . . . . + 1 2 ( a 98 b 98 ) + 1 2 ( a 99 b 99 ) = 1 2 a 1 + 1 2 ( - b 1 + a 2 ) + 1 2 ( - b 2 + a 3 ) + 1 2 ( - b 3 + a 4 ) + . . . . + 1 2 ( - b 97 + a 98 ) + 1 2 ( - b 98 + a 99 ) 1 2 b 99 = 1 2 a 1 1 2 b 99 = 1 2 ( 1 1 2 1 + 1 ) 1 2 ( 1 9 9 2 + 99 + 1 ) = 1 2 1 19802 \begin{aligned} S &= t_1 + t_2 + t_3 + .... + t_{98} + t_{99} \\ \\ &= \dfrac{1}{2} (a_1 - b_1) + \dfrac{1}{2} (a_2 - b_2) + \dfrac{1}{2} (a_3 - b_3) + .... + \dfrac{1}{2} (a_{98} - b_{98}) + \dfrac{1}{2} (a_{99} - b_{99}) \\ \\ &= \dfrac{1}{2} a_1 + \dfrac{1}{2} (\text{-}b_1 + a_2) + \dfrac{1}{2} (\text{-}b_2 + a_3) + \dfrac{1}{2} (\text{-}b_3 + a_4) + .... + \dfrac{1}{2} (\text{-}b_{97} + a_{98}) + \dfrac{1}{2} (\text{-}b_{98} + a_{99}) - \dfrac{1}{2} b_{99} \\ \\ &= \dfrac{1}{2} a_1 - \dfrac{1}{2} b_{99} \\ \\ &= \dfrac{1}{2} \left( \dfrac{1}{1^2 - 1 + 1} \right) - \dfrac{1}{2} \left( \dfrac{1}{99^2 + 99 + 1} \right) \\ \\ &= \dfrac{1}{2} - \dfrac{1}{19802} \end{aligned}

which clearly falls between 0.49 0.49 and 0.50 0.50 .

Even I did in almost the same way!

Prem Chebrolu - 3 years, 1 month ago
Naren Bhandari
May 10, 2018

Well my solution is similar @zico quintina however, not so clean and well explained . Here is the same problem telescoping series .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...