Summation #4

Evaluate:

n = 0 n 2 2 n 1 ( 2 ) 2 n \large\sum_{n=0}^\infty \frac{n^{2}2^{n-1}}{(-2)^{2n}}


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 26, 2018

Relevant wiki: Geometric Progression Sum

S = n = 0 n 2 2 n 1 ( 2 ) 2 n = n = 0 n 2 2 n + 1 = n = 1 n 2 2 n + 1 = n = 0 ( n + 1 ) 2 2 n + 2 = 1 2 n = 0 n 2 + 2 n + 1 2 n + 1 = 1 2 n = 0 n 2 2 n + 1 + 1 2 n = 0 n 2 n + 1 4 n = 0 1 2 n See note. = 1 2 S + 1 2 n = 0 1 2 n + 1 4 n = 0 1 2 n = 3 2 n = 0 1 2 n Sum of infinite geometric progression = 3 2 ( 1 1 1 2 ) = 3 \begin{aligned} S & = \sum_{n=0}^\infty \frac {n^22^{n-1}}{(-2)^{2n}} \\ & = \sum_{\color{#3D99F6}n=0}^\infty \frac {n^2}{2^{n+1}} = \sum_{\color{#D61F06}n=1}^\infty \frac {n^2}{2^{n+1}} \\ & = \sum_{\color{#3D99F6}n=0}^\infty \frac {(n+1)^2}{2^{n+2}} \\ & = \frac 12 \sum_{n=0}^\infty \frac {n^2+2n+1}{2^{n+1}} \\ & = \frac 12 \sum_{n=0}^\infty \frac {n^2}{2^{n+1}} + \frac 12 {\color{#3D99F6} \sum_{n=0}^\infty \frac n{2^n}} + \frac 14 \sum_{n=0}^\infty \frac 1{2^n} & \small \color{#3D99F6} \text{See note.} \\ & = \frac 12 S + \frac 12 {\color{#3D99F6} \sum_{n=0}^\infty \frac 1{2^n}} + \frac 14 \sum_{n=0}^\infty \frac 1{2^n} \\ & = \frac 32\color{#3D99F6} \sum_{n=0}^\infty \frac 1{2^n} & \small \color{#3D99F6} \text{Sum of infinite geometric progression} \\ & = \frac 32 \color{#3D99F6} \left(\frac 1{1-\frac 12}\right) \\ & = \boxed 3 \end{aligned}


Note:

S 1 = n = 0 n 2 n = n = 1 n 2 n = n = 0 n + 1 2 n + 1 = 1 2 n = 0 n 2 n + 1 2 n = 0 1 2 n = 1 2 S 1 + 1 2 n = 0 1 2 n = n = 0 1 2 n \begin{aligned} S_1 & = \sum_{\color{#3D99F6}n=0}^\infty \frac n{2^n} = \sum_{\color{#D61F06}n=1}^\infty \frac n{2^n} \\ & = \sum_{\color{#3D99F6}n=0}^\infty \frac {n+1}{2^{n+1}} \\ & = \frac 12 \sum_{n=0}^\infty \frac n{2^n} + \frac 12 \sum_{n=0}^\infty \frac 1{2^n} \\ & = \frac 12 S_1 + \frac 12 \sum_{n=0}^\infty \frac 1{2^n} \\ & = \sum_{n=0}^\infty \frac 1{2^n} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...