Summation #6

Calculus Level 3

n = 0 ( 1 ) n 3 n 1 2 n + 2 ( 2 n + 2 ) ! = sin 2 ( a b ) c \large\sum_{n=0}^\infty\frac{(-1)^{n}3^{n-1}}{2^{n+2}(2n+2)!}=\frac{\sin^{2}\left(\frac{\sqrt{\color{#D61F06}a\color{#333333}}}{\color{#D61F06}b\color{#333333}}\right)}{\color{#D61F06}c\color{#333333}}

What is minimal possible value for a + b + c \color{#D61F06}a+b+c , where a \color{#D61F06}a , b \color{#D61F06}b , and c \color{#D61F06}c are positive integers?


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider the Maclaurin series of sin x \sin x ,

n = 0 ( 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = sin x Integrate both sides w.r.t. x n = 0 ( 1 ) n x 2 n + 2 ( 2 n + 2 ) ! = cos x + 1 Since cos 0 = 1 n = 0 ( 1 ) n x 2 n + 2 ( 2 n + 2 ) ! = 1 + 2 sin 2 x 2 + 1 Let x = 3 2 n = 0 ( 1 ) n 3 n + 1 2 n + 1 ( 2 n + 2 ) ! = 2 sin 2 ( 3 2 2 ) Multiply both sides by 1 18 n = 0 ( 1 ) n 3 n 1 2 n + 2 ( 2 n + 2 ) ! = 1 9 sin 2 ( 6 4 ) \begin{aligned} \sum_{n=0}^\infty \frac {(-1)^n x^{2n+1}}{(2n+1)!} & = \sin x & \small \color{#3D99F6} \text{Integrate both sides w.r.t. }x \\ \sum_{n=0}^\infty \frac {(-1)^n x^{2n+2}}{(2n+2)!} & = \color{#D61F06} - \cos x \color{#3D99F6} + 1 & \small \color{#3D99F6} \text{Since }\cos 0 = 1 \\ \sum_{n=0}^\infty \frac {(-1)^n x^{2n+2}}{(2n+2)!} & = {\color{#D61F06} - 1 + 2 \sin^2 \frac x2} + 1 & \small \color{#3D99F6} \text{Let }x = \sqrt{\frac 32} \\ \sum_{n=0}^\infty \frac {(-1)^n 3^{n+1}}{2^{n+1}(2n+2)!} & = 2 \sin^2 \left(\frac {\sqrt {\frac 32}}2\right) & \small \color{#3D99F6} \text{Multiply both sides by }\frac 1{18} \\ \sum_{n=0}^\infty \frac {(-1)^n 3^{n-1}}{2^{n+2}(2n+2)!} & = \frac 19 \sin^2 \left(\frac {\sqrt 6}4\right) \end{aligned}

Therefore, a + b + c = 6 + 4 + 9 = 19 a+b+c = 6+4+9 = \boxed{19} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...