Summation #7

Calculus Level 3

k = 0 ( 1 ) k ( 1 4 ) k + 1 2 2 k ( 2 k + 1 ) ! = sin ( a b ) \large\sum_{k=0}^\infty\frac{(-1)^{k}\left(\frac{1}{4}\right)^{k+1}}{2^{2k}(2k+1)!}=\sin\left({\frac{a}{b}}\right)

If a a and b b are coprime, positive integers, what is a + b a+b ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Maclaurin Series

Similar solution with @Guilherme Niedu 's, different presentation.

S = k = 0 ( 1 ) k ( 1 4 ) k + 1 2 2 k ( 2 k + 1 ) ! = k = 0 ( 1 ) k ( 2 k + 1 ) ! 1 4 k 4 k + 1 = k = 0 ( 1 ) k ( 2 k + 1 ) ! ( 1 4 ) 2 k + 1 Maclaurin series sin x = n = 0 ( 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = sin ( 1 4 ) \begin{aligned} S & = \sum_{k=0}^\infty \frac {(-1)^k \color{#3D99F6}\left(\frac 14\right)^{k+1}}{{\color{#D61F06}2^{2k}}(2k+1)!} \\ & = \sum_{k=0}^\infty \frac {(-1)^k}{(2k+1)!} \cdot \frac 1{{\color{#D61F06}4^k}\cdot \color{#3D99F6}4^{k+1}} \\ & = \sum_{k=0}^\infty \frac {(-1)^k}{(2k+1)!} \left(\frac 14\right)^{2k+1} & \small \color{#3D99F6} \text{Maclaurin series }\sin x = \sum_{n=0}^\infty \frac {(-1)^n x^{2n+1}}{(2n+1)!} \\ & = \sin \left(\frac 14\right) \end{aligned}

Therefore, a + b = 1 + 3 = 4 a+b = 1+3 = \boxed 4 .

Guilherme Niedu
Oct 8, 2018

S = k = 0 ( 1 ) k ( 1 4 ) k + 1 2 2 k ( 2 k + 1 ) ! \large \displaystyle S = \sum_{k=0}^{\infty} \frac{ (-1)^k \left(\frac14 \right) ^{k+1} }{\color{#20A900}2^{2k} \color{#333333} (2k+1)!}

S = k = 0 ( 1 ) k ( 1 4 ) k + 1 ( 2 k + 1 ) ! ( 1 4 ) k \large \displaystyle S = \sum_{k=0}^{\infty} \frac{ (-1)^k \left(\frac14 \right) ^{k+1} }{(2k+1)!} \color{#20A900} \left(\frac14 \right) ^{k}

S = k = 0 ( 1 ) k ( 1 4 ) 2 k + 1 ( 2 k + 1 ) ! \large \displaystyle S = \sum_{k=0}^{\infty} \frac{ (-1)^k \left(\frac14 \right) ^{2k+1} }{(2k+1)!}

Which is the Maclaurin series for the sine function.

So:

S = sin ( 1 4 ) , a = 1 , b = 4 , a + b = 5 \color{#3D99F6} \large \displaystyle S = \sin \left ( \frac14 \right ) , a = 1, b = 4, \boxed{\large \displaystyle a+b=5}

Abha Vishwakarma
Oct 9, 2018

The given summation after expansion gives us the following infinite series -

S = k = 0 ( 1 ) k ( 1 4 ) k + 1 2 2 k ( 2 k + 1 ) ! = 1 2 2 1 2 6 3 ! + 1 2 10 5 ! 1 2 14 7 ! ( 1 ) \begin{aligned} S &= \large\sum_{k=0}^\infty\frac{(-1)^{k}\left(\frac{1}{4}\right)^{k+1}}{2^{2k}(2k+1)!} \\ \\ &= \frac{1}{2^2} - \frac{1}{2^6{3}!} + \frac{1}{2^{10}{5}!} - \frac{1}{2^{14}{7}!} \dots (1) \\ \end{aligned}

And this looks exactly like the Taylor Series Expansion of s i n x sinx centered at x = 0 x=0 , which is otherwise referred to as the Maclaurin Series expansion of s i n x sinx .

The Maclaurin Series Expansion of s i n x sinx is

s i n x = x x 3 3 ! + x 5 5 ! x 7 7 ! ( 2 ) \large{sinx = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \dots (2)}

Comparing equations ( 1 ) (1) and ( 2 ) (2) we get x = 1 2 2 = 1 4 \large{x = \frac{1}{2^2} = \frac{1}{4}}

So s i n x = s i n ( 1 4 ) = s i n ( a b ) \large{sinx = sin(\frac{1}{4}) = sin(\frac{a}{b})}

Hence a + b = 5 a+b = 5

For more info on Taylor Series refer this . Anyone will fall in love with Taylor Series :-)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...