Radicals are Fun!!!

Algebra Level 4

x n 1 ( x n 2 ( x n 3 x n 2 n 1 n \sqrt[n]{x^{n-1} \big ( \sqrt[n-1]{ x^{n-2} \big ( \sqrt[n-2]{x^{n-3} \cdots \sqrt x } }}

Consider the nested expression above. When n = 12345678987654321 n=12345678987654321 , the expression can be simplified to x 1 1 / a ! x^{1- 1/a!} .

Compute a 100 \dfrac a{100} .

For instance, for n = 5 n=5 , the expression is in the form x 4 ( x 3 ( x 2 ( x 3 4 5 \sqrt [ 5 ]{ { x }^{ 4 }(\sqrt [ 4 ]{ { x }^{ 3 }(\sqrt [ 3 ]{ { x }^{ 2 }(\sqrt { x } } } } .


This problem is original.


The answer is 123456789876543.21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Feb 17, 2016

Start from rightmost end (i.e x \sqrt x ). x n 1 ( x 4 ( x 3 ( x 2 + 1 2 3 4 5 n 1 n \sqrt[n]{ x^{n-1}(\sqrt[n-1]{\cdots\sqrt [ 5 ]{ { x }^{ 4 }(\sqrt [ 4 ]{ { x }^{ 3 }(\sqrt [ 3 ]{ { x }^{ 2+\color{#D61F06}{\frac{1}{2}}}} }}} } = x n 1 ( x 4 ( x 3 + 5 6 4 5 n 1 n =\sqrt[n]{ x^{n-1}(\sqrt[n-1]{\cdots\sqrt [ 5 ]{ { x }^{ 4 }(\sqrt [ 4 ]{ { x }^{ 3+\color{#D61F06}{\frac{5}{6} }}} }}} = x n 1 ( x 4 + 23 24 5 n 1 n =\sqrt[n]{ x^{n-1}(\sqrt[n-1]{\cdots\sqrt [ 5 ]{ { x }^{ 4+\color{#D61F06}{\frac{23}{24} }}} }} \cdots = x ( n 1 ) + ( n 1 ) ! 1 ( n 1 ) ! n =\sqrt[n]{x^{(n-1)+\color{#D61F06}{\frac{(n-1)!-1}{(n-1)!}}}} = x 1 1 n ! \large =x^{\color{#D61F06}{^{1-\frac{1}{n!}}}} Whatever we put for 'n', that only we would get for 'a' also . Hence for n=123...321 we'll get a=123...321. 12345668987654321 100 = 123456789876543.21 \huge \frac{12345668987654321}{100}=\boxed{\color{#007fff}{123456789876543.21}}

Aditya Dhawan
Feb 16, 2016

L e t x n 1 ( x n 2 ( x n 3 . . . . . . . . . . . . x n 2 n 1 n = y T h e n , y n ! = x ( n 1 ) [ ( n 1 ) ! ] + ( n 2 ) [ ( n 2 ) ! ] . . . . . . . + 2 ( 2 ! ) + 1 ( 1 ! ) ( S u c c e s s i v e l y r a i s i n g b o t h s i d e s b y n , n 1...2 ) y = ( x ) i = 1 n 1 i ( i ! ) n ! ( 1 ) N o w , i = 1 n 1 i ( i ! ) = ( i + 1 1 ) ( i ! ) = i ! ( i + 1 ) i ! = ( i + 1 ) ! i ! = 2 ! 1 ! + 3 ! 2 ! . . . + ( n 1 ) ! ( n 2 ) ! + n ! ( n 1 ) ! = n ! 1 ( T e l e s c o p i n g S e r i e s ) T h u s y = x n ! 1 n ! = x 1 1 n ! N o w n = 12345678987654321 T h u s t h e a n s w e r s h o u l d b e = 12345678987654321 100 = 123456789876543.21 Let\quad \sqrt [ n ]{ { x }^{ n-1 }(\sqrt [ n-1 ]{ { x }^{ n-2 }(\sqrt [ n-2 ]{ { x }^{ n-3 }............\sqrt { x } } } } \quad =\quad y\\ \\ Then,\quad \\ { y }^{ n! }=\quad { x }^{ (n-1)[(n-1)!]+(n-2)[(n-2)!].......+2(2!)+1(1!) }\quad (\quad Successively\quad raising\quad both\quad sides\quad by\quad n,n-1...2)\\ \\ \Rightarrow y=({ x) }^{ \frac { \sum _{ i=1 }^{ n-1 }{ i(i!) } }{ n! } }(1)\\ Now,\\ \sum _{ i=1 }^{ n-1 }{ i(i!) } =\quad \sum { (i+1-1)(i!) } =\sum { i!(i+1)-i!=\sum { (i+1)!-i!=2!-1!+3!-2!...+(n-1)!-(n-2)!+n!-(n-1)!=n!-1\quad } } (Telescoping\quad Series)\\ Thus\quad y=\quad { x }^{ \frac { n!-1 }{ n! } }=\quad { x }^{ 1-\frac { 1 }{ n! } }\\ Now\quad n=12345678987654321\\ Thus\quad the\quad answer\quad should\quad be=\frac { 12345678987654321 }{ 100 } =123456789876543.21

Moderator note:

When you want to show that a pattern exists (without explicitly stating it), it is best to have each of the terms be in the exact form of the pattern. IE, instead of 4, write it as 2 × 2 ! 2 \times 2 ! . Similarly, instead of 1, write it as 1 × 1 ! 1 \times 1! .

Note: You should only Latex up the equations. There is no need to Latex up the text, which makes it harder to read.

Calvin Lin Staff - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...