n x n − 1 ( n − 1 x n − 2 ( n − 2 x n − 3 ⋯ x
Consider the nested expression above. When n = 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 , the expression can be simplified to x 1 − 1 / a ! .
Compute 1 0 0 a .
For instance, for n = 5 , the expression is in the form 5 x 4 ( 4 x 3 ( 3 x 2 ( x .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
L e t n x n − 1 ( n − 1 x n − 2 ( n − 2 x n − 3 . . . . . . . . . . . . x = y T h e n , y n ! = x ( n − 1 ) [ ( n − 1 ) ! ] + ( n − 2 ) [ ( n − 2 ) ! ] . . . . . . . + 2 ( 2 ! ) + 1 ( 1 ! ) ( S u c c e s s i v e l y r a i s i n g b o t h s i d e s b y n , n − 1 . . . 2 ) ⇒ y = ( x ) n ! ∑ i = 1 n − 1 i ( i ! ) ( 1 ) N o w , ∑ i = 1 n − 1 i ( i ! ) = ∑ ( i + 1 − 1 ) ( i ! ) = ∑ i ! ( i + 1 ) − i ! = ∑ ( i + 1 ) ! − i ! = 2 ! − 1 ! + 3 ! − 2 ! . . . + ( n − 1 ) ! − ( n − 2 ) ! + n ! − ( n − 1 ) ! = n ! − 1 ( T e l e s c o p i n g S e r i e s ) T h u s y = x n ! n ! − 1 = x 1 − n ! 1 N o w n = 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 T h u s t h e a n s w e r s h o u l d b e = 1 0 0 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 = 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 . 2 1
When you want to show that a pattern exists (without explicitly stating it), it is best to have each of the terms be in the exact form of the pattern. IE, instead of 4, write it as 2 × 2 ! . Similarly, instead of 1, write it as 1 × 1 ! .
Problem Loading...
Note Loading...
Set Loading...
Start from rightmost end (i.e x ). n x n − 1 ( n − 1 ⋯ 5 x 4 ( 4 x 3 ( 3 x 2 + 2 1 = n x n − 1 ( n − 1 ⋯ 5 x 4 ( 4 x 3 + 6 5 = n x n − 1 ( n − 1 ⋯ 5 x 4 + 2 4 2 3 ⋯ = n x ( n − 1 ) + ( n − 1 ) ! ( n − 1 ) ! − 1 = x 1 − n ! 1 Whatever we put for 'n', that only we would get for 'a' also . Hence for n=123...321 we'll get a=123...321. 1 0 0 1 2 3 4 5 6 6 8 9 8 7 6 5 4 3 2 1 = 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 . 2 1