Summation and Factorials

Algebra Level 3

k = 3 2000 k ( k 2 ) ! + ( k 1 ) ! + k ! \sum_{k=3}^{2000} \frac{k}{(k-2)! + (k-1)! + k!}

Which of the following choices is the best approximation for the summation above?

1 2 \frac12 1 60 \frac1{60} 1 12 \frac1{12} 1 6 \frac16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Prakkash Manohar
Jan 7, 2016

I was feeling lazy to type the solution.

Kay Xspre
Jan 7, 2016

I would like to adjust the index to k = 1 1998 k + 2 k ! + ( k + 1 ) ! + ( k + 2 ) ! \sum_{k=1}^{1998}\frac{k+2}{k!+(k+1)!+(k+2)!} . We first simplify the fraction to k + 2 k ! + ( k + 1 ) ! + ( k + 2 ) ! = k + 2 k ! ( 1 + ( k + 1 ) + ( k + 1 ) ( k + 2 ) ) = k + 2 k ! ( k + 2 ) 2 \frac{k+2}{k!+(k+1)!+(k+2)!} = \frac{k+2}{k!(1+(k+1)+(k+1)(k+2))}=\frac{k+2}{k!(k+2)^2} From here, we can also put it into 1 k ! ( k + 2 ) = ( k + 2 ) 1 ( k + 2 ) ! = 1 ( k + 1 ) ! 1 ( k + 2 ) ! \frac{1}{k!(k+2)}=\frac{(k+2)-1}{(k+2)!} = \frac{1}{(k+1)!}- \frac{1}{(k+2)!} Now we put it into sigma, which gives k = 1 1998 ( 1 ( k + 1 ) ! 1 ( k + 2 ) ! ) = 1 2 ! 1 2000 ! 1 2 \sum_{k=1}^{1998}(\frac{1}{(k+1)!}- \frac{1}{(k+2)!}) = \frac{1}{2!}-\frac{1}{2000!}\approx\frac{1}{2}

Aditya Dhawan
Apr 29, 2016

k = 3 2000 k ( k 2 ) ! + ( k 1 ) ! + k ! = 1 3 + 1 8 . . . . . T h u s t h e v a l u e o f t h i s s u m m a t i o n i s a t l e a s t 1 3 T h e r e b y e l i m i n a t i n g t h e o p t i o n s l e s s t h a n 1 3 , t h e o n l y p o s s i b l e s o l u t i o n i s 0.5 O t h e r w i s e , k = 3 2000 k ( k 2 ) ! + ( k 1 ) ! + k ! = k = 3 2000 k ( k 2 ) ! ( k 2 ) = k = 3 2000 1 ( k 2 ) ! ( k ) = k = 3 2000 k 1 ( k ) ! = k = 3 2000 1 ( k 1 ) ! 1 k ! = { 1 2 ! 1 2000 ! } 0.5 \sum _{ k=3 }^{ 2000 }{ \frac { k }{ (k-2)!+(k-1)!+k! } =\quad \frac { 1 }{ 3 } } +\frac { 1 }{ 8 } .....\\ Thus\quad the\quad value\quad of\quad this\quad summation\quad is\quad atleast\quad \frac { 1 }{ 3 } \\ Thereby\quad eliminating\quad the\quad options\quad less than\quad \frac { 1 }{ 3 } ,\quad the\quad only\quad possible\quad solution\quad is\quad \boxed { 0.5 } \\ Otherwise,\quad \sum _{ k=3 }^{ 2000 }{ \frac { k }{ (k-2)!+(k-1)!+k! } =\quad \quad } \sum _{ k=3 }^{ 2000 }{ \frac { k }{ (k-2)!({ k }^{ 2 }) } = } \sum _{ k=3 }^{ 2000 }{ \frac { 1 }{ (k-2)!({ k }) } = } \sum _{ k=3 }^{ 2000 }{ \frac { k-1 }{ (k)! } } \\ =\quad \sum _{ k=3 }^{ 2000 }{ \frac { 1 }{ (k-1)! } } -\quad \frac { 1 }{ k! } =\quad \left\{ \frac { 1 }{ 2! } -\frac { 1 }{ 2000! } \right\} \approx \boxed { 0.5 }

Moderator note:

Ideally, solutions should be independent of restriction of choices, so that we have a true understanding of the problem.

Great!! I completely forgot about the objective approach otherwise I would've set the options accordingly.

Prakkash Manohar - 5 years, 1 month ago

I completely agree with you, which is why I also provided the solution. The elimination method was merely to highlight the flaw in the setting of the options.

Aditya Dhawan - 5 years, 1 month ago

Log in to reply

No problem. Thanks for letting me know the flaw. Now, I'll be more cautious while setting options :D

Prakkash Manohar - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...