Summation and Trig met and made this (2)

Geometry Level 4

Simplify the following summation:

k = 0 n ( n k ) cos k θ sin n k θ cos ( 1 2 ( n k ) π ) \displaystyle \sum_{k=0}^n \binom{n}{k} \cos^k \theta \sin^{n - k} \theta \cos \left (\frac {1}{2} (n - k) \pi \right)

sin n θ \sin n \theta sin θ n \sin \frac {\theta}{n} cos n θ \cos n \theta cos θ n \cos \frac {\theta}{n}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jatin Yadav
Jul 3, 2014

Let n k = r n-k = r . We have to evaluate :

r = 0 n ( n r ) sin r θ cos n r θ cos ( r π 2 ) \displaystyle \sum_{r=0}^{n} {n \choose r} \sin^r \theta \cos^{n-r} \theta \cos\bigg(r \dfrac{\pi}{2}\bigg)

Now, If r r is odd, then cos r π 2 \cos \frac{r \pi}{2} is 0 0 . And if even, it would be cos r π 2 = i r \cos \frac{r \pi}{2} = i^r .

Hence, we have to evaluate:

r e v e n , 0 r n ( n r ) sin r θ cos n r θ i r \displaystyle \sum_{r \in even,0 \leq r \leq n} {n \choose r} \sin^r \theta \cos^{n-r} \theta i^r

r e v e n , 0 r n ( n r ) ( i sin θ ) r cos n r θ \displaystyle \sum_{r \in even,0 \leq r \leq n} {n \choose r} (i\sin \theta)^r \cos^{n-r} \theta

= ( cos θ + i sin θ ) n + ( cos θ i sin θ ) n 2 = cos n θ \dfrac{(\cos \theta + i \sin \theta)^n + (\cos \theta - i \sin \theta)^n}{2} = \boxed{\cos n \theta}

Nice solution, @jatin yadav ! :D

Sharky Kesa - 6 years, 11 months ago

Log in to reply

I like how there are more upvotes for this comment than there are for the actual solution. :D

Finn Hulse - 6 years, 8 months ago

Log in to reply

I know, strange people. :P

Sharky Kesa - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...