Summation Contest Conceptual Problem-1

Calculus Level 5

n = 2 ζ ( n ) 2 n = ln A \large \sum _{ n=2 }^{ \infty }{ \dfrac { \zeta ( n ) }{ { 2 }^{ n } } } = \ln A

Find A A .

Hint : Try using the generating function .

Notation : ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


View the Brilliant Summation Contest Season-1 for concepts. Try more contest conceptual problems here .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 11, 2016

S = n = 2 ζ ( n ) 2 n = n = 2 k = 1 1 k n 2 n = n = 2 k = 1 1 ( 2 k ) n = k = 1 n = 2 1 ( 2 k ) n = k = 1 1 ( 2 k ) 2 1 1 2 k = k = 1 1 ( 2 k ) 2 2 k = k = 1 1 ( 2 k ) ( 2 k 1 ) = k = 1 ( 1 2 k 1 1 2 k ) = 1 1 2 + 1 3 1 4 + = ln ( 2 ) \begin{aligned} S & = \sum_{n=2}^\infty \frac {\zeta (n)}{2^n} = \sum_{n=2}^\infty \frac {\sum_{k=1}^\infty \frac 1{k^n}}{2^n} = \sum_{n=2}^\infty \sum_{k=1}^\infty \frac 1{(2k)^n} \\ & = \sum_{k=1}^\infty \sum_{n=2}^\infty \frac 1{(2k)^n} = \sum_{k=1}^\infty \frac {\frac 1{(2k)^2}}{1-\frac 1{2k}} = \sum_{k=1}^\infty \frac 1{(2k)^2-2k} \\ & = \sum_{k=1}^\infty \frac 1{(2k)(2k-1)} = \sum_{k=1}^\infty \left( \frac 1{2k-1} - \frac 1{2k} \right) \\ & = 1 - \frac 12 + \frac 13 - \frac 14 + \cdots = \ln (2) \end{aligned}

A = 2 \implies A = \boxed{2}

Relevant wiki: Riemann Zeta Function

As hinted,

k = 2 ζ ( k ) x k 1 = γ ψ ( 1 x ) \displaystyle \sum_{k=2}^{\infty} \zeta(k)x^{k-1} = -\gamma-\psi(1-x)

Putting x = 1 2 x=\frac{1}{2} and dividing both sides by 2 and substituting ψ ( 1 2 ) = 2 ln 2 γ \displaystyle \psi(\frac{1}{2}) = -2\ln 2 - \gamma we have the answer ln 2 \boxed{\ln 2}

HHhahah! nice generating function

Pi Han Goh - 4 years, 11 months ago

Can you provide the proof?

Aditya Kumar - 4 years, 11 months ago

Log in to reply

k 2 ζ ( k ) ( x ) k = k 2 s 1 ( 1 ) k x k s k \displaystyle \sum_{k \ge 2} \zeta(k)(-x)^k = \sum_{k \ge 2}\sum_{s\ge 1} \frac{(-1)^k x^k}{s^k}

Interchanging summations we have ,

s 1 k 2 ( x ) k s k = s 1 x 2 s 2 1 + x s = s 1 x 2 s ( s + x ) \displaystyle \sum_{s \ge 1} \sum_{k \ge 2} \frac{(-x)^k}{s^k} = \sum_{s \ge 1} \frac{\frac{x^2}{s^2}}{1+\frac{x}{s}} = \sum_{s \ge 1} \frac{x^2}{s(s+x)}

So, k 2 ζ ( k ) ( x ) k = x s 1 ( 1 s 1 s + x ) = x H x \displaystyle \sum_{k \ge 2} \zeta(k)(-x)^{k} = x\sum_{s\ge 1} (\frac{1}{s} - \frac{1}{s+x}) = -x H_x

We know , H x = ψ ( 1 + x ) + γ \displaystyle H_x = \psi(1+x) + \gamma

Substituting we have , k 2 ζ ( k ) ( x ) k = x ( ψ ( 1 + x ) + γ ) \displaystyle \sum_{k \ge 2} \zeta(k)(-x)^{k} = x(\psi(1+x)+\gamma)

Now changing x x x \to -x & dividing by x x we have ,

k = 2 ζ ( k ) x k 1 = ψ ( 1 x ) γ \displaystyle \sum_{k=2}^{\infty} \zeta(k)x^{k-1} = -\psi(1-x) -\gamma & thus proved.

Aditya Narayan Sharma - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...