Summation Contest Conceptual Problem-2

Calculus Level 5

0 1 x ( 1 x ) 1 / 4 ( 2 x ) 2 d x = A + B π C D + E F ln ( 1 + G ) H \int _{ 0 }^{ 1 }{ \dfrac { x{ ( 1-x ) }^{ 1/4} }{ { \left( 2-x \right) }^{ 2 } } dx } =-A+\frac { B\pi \sqrt { C } }{ D } +\frac { E\sqrt { F } \ln { ( 1+\sqrt { G } ) } }{ H }

The above equation is true for positive integers A A , B B , C C , D D , E E , F F , G G and H H . Find the minimum value of A + B + C + D + E + F + G + H A+B+C+D+E+F+G+H .

Hint: Use partial fractions after making a good substitution.


View the Brilliant Summation Contest Season-1 for concepts. Try more contest conceptual problems here .


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Dec 22, 2016

We have 0 1 x ( 1 x ) 1 4 ( 2 x ) 2 d x = 0 1 x 1 4 ( 1 x ) ( 1 + x ) 2 d x = 2 0 1 x 1 4 ( 1 + x ) 2 d x 0 1 x 3 4 d x + 0 1 x 3 4 1 + x , d x = 2 B 1 2 ( 5 4 , 3 4 ) 4 + B 1 2 ( 1 4 , 3 4 ) = 5 + 3 4 π 2 + 3 2 2 ln ( 2 + 1 ) \begin{aligned} \int_0^1 \frac{x(1-x)^{\frac14}}{(2-x)^2}\,dx & = \int_0^1 \frac{x^{\frac14}(1-x)}{(1+x)^2}\,dx \\ & = 2\int_0^1 \frac{x^{\frac14}}{(1+x)^2}\,dx - \int_0^1 x^{-\frac34}\,dx + \int_0^1 \frac{x^{-\frac34}}{1 + x},dx \\ & = 2B_{\frac12}\big(\tfrac54,\tfrac34\big) - 4 + B_{\frac12}\big(\tfrac14,\tfrac34\big) \\ & = -5 + \tfrac34\pi\sqrt{2} + \tfrac32\sqrt{2}\ln(\sqrt{2}+1) \end{aligned} making the answer 5 + 3 + 2 + 4 + 3 + 2 + 2 + 2 = 23 5+3+2+4+3+2+2+2 = \boxed{23} .

I want to convert the integral into a summation and then convert it back into an integral which would be easier to solve.(Maybe a direct transformation exist but right now it is not coming to my mind) Let us re-write the integration as:-

0 1 ( 1 x ) x 1 4 ( 1 + x ) 2 d x (using substitution x=1-u) \displaystyle \int_{0}^{1}\frac{(1-x)x^{\frac{1}{4}}}{(1+x)^{2}} dx \quad\quad\quad \text{(using substitution x=1-u)}

Now we know :-

1 1 + x = r = 0 ( 1 ) r x r , \displaystyle \frac{1}{1+x} = \sum_{r=0}^{\infty}(-1)^{r}x^{r}, ( 1 < x < 1 -1<x<1 )

Differentiating both sides :-

1 ( 1 + x ) 2 = r = 1 ( 1 ) r 1 r x r 1 \displaystyle \frac{1}{(1+x)^{2}}=\sum_{r=1}^{\infty}(-1)^{r-1}rx^{r-1}

So we have :-

r = 1 0 1 ( 1 ) r 1 r x r 3 4 ( 1 x ) d x \displaystyle \sum_{r=1}^{\infty} \int_{0}^{1}(-1)^{r-1}rx^{r-\frac{3}{4}}(1-x)dx

r = 1 ( 1 ) r 1 ( 4 r 4 r + 1 4 r 4 r + 5 ) \displaystyle \sum_{r=1}^{\infty} (-1)^{r-1} \left(\frac{4r}{4r+1} -\frac{4r}{4r+5}\right)

r = 1 ( 1 ) r 1 5 4 r + 5 r = 1 ( 1 ) r 1 1 4 r + 1 (both series as well as original series are convergent by Leibnitz test ) \displaystyle \sum_{r=1}^{\infty} (-1)^{r-1}\frac{5}{4r+5} - \sum_{r=1}^{\infty}(-1)^{r-1}\frac{1}{4r+1} \quad\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \text{(both series as well as original series are convergent by Leibnitz test})

Now using 1 1 + x = r = 0 ( 1 ) r x r \displaystyle \frac{1}{1+x} = \sum_{r=0}^{\infty}(-1)^{r}x^{r} we have:-

1 1 + x 4 = r = 0 ( 1 ) r x 4 r \displaystyle \frac{1}{1+x^{4}} = \sum_{r=0}^{\infty}(-1)^{r}x^{4r}

Hence x 4 1 + x 4 = r = 1 ( 1 ) r 1 x 4 r \displaystyle \frac{x^{4}}{1+x^{4}} = \sum_{r=1}^{\infty}(-1)^{r-1}x^{4r} .

Hence 0 1 x 4 1 + x 4 d x = r = 1 ( 1 ) r 1 1 4 r + 1 \displaystyle \int_{0}^{1}\frac{x^{4}}{1+x^{4}}dx = \sum_{r=1}^{\infty}(-1)^{r-1}\frac{1}{4r+1} .

Similarly 0 1 x 8 1 + x 4 d x = r = 1 ( 1 ) r 1 1 4 r + 5 \displaystyle \int_{0}^{1}\frac{x^{8}}{1+x^{4}}dx = \sum_{r=1}^{\infty}(-1)^{r-1}\frac{1}{4r+5} .

Hence we have our transformed integral as :- 0 1 5 x 8 x 4 1 + x 4 d x \int_{0}^{1} \frac{5x^{8}-x^{4}}{1+x^{4}}dx

= 5 0 1 x 4 d x 6 0 1 x 4 1 + x 4 d x = 1 6 0 1 ( x 4 + 1 x 4 + 1 1 1 + x 4 ) d x \displaystyle = 5\int_{0}^{1}x^{4} dx - 6\int_{0}^{1}\frac{x^{4}}{1+x^{4}}dx = 1-6\int_{0}^{1}\left(\frac{x^{4}+1}{x^{4}+1} -\frac{1}{1+x^{4}}\right)dx

= 5 + 6 0 1 1 1 + x 4 d x \displaystyle = -5 +6\int_{0}^{1} \frac{1}{1+x^{4}} dx

Now the function 1 1 + x 4 \displaystyle \frac{1}{1+x^{4}} has a known antiderivative and it's indefinite integration is taught in high school.

1 1 + x 4 d x = 1 2 2 tan 1 ( x 1 x 2 ) 1 4 2 ln ( x + 1 x 2 x + 1 x + 2 ) + C \displaystyle \int\frac{1}{1+x^{4}}dx = \frac{1}{2\sqrt{2}}\tan^{-1}\left(\frac{x-\frac{1}{x}}{\sqrt{2}}\right) - \frac{1}{4\sqrt{2}}\ln\left(\frac{x+\frac{1}{x}-\sqrt{2}}{x+\frac{1}{x}+\sqrt{2}}\right) + C

Using the above we arrive at the answer: -

5 + 3 π 2 4 + 3 2 2 ln ( 2 + 1 ) \displaystyle -5 + \frac{3\pi\sqrt{2}}{4} +\frac{3\sqrt{2}}{2}\ln(\sqrt{2}+1)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...