Summation Contest Conceptual Problem-4

Calculus Level 5

n = 1 1 ( n 2 + 4 ) 2 = 1 A ( 1 + π coth ( B π ) + C π D ( csch ( E π ) ) F ) \sum _{ n=1 }^{ \infty }{ \dfrac { 1 }{ { ( { n }^{ 2 }+4 ) }^{ 2 } } } =\dfrac { 1 }{ A } \left ( -1+\pi \coth { ( B\pi ) } +C{ \pi }^{ D }{ \left( \text{csch}\left( E\pi \right) \right) }^{ F } \right)

The above equation holds true for positive integers A , B , C , D , E A,B,C,D,E and F F . Find A + B + C + D + E + F A+B+C+D+E+F .

Hint: Exploit partial fractions and relate it to the polygamma function.


View the Brilliant Summation Contest Season-1 for concepts. Try more contest conceptual problems here .


The answer is 42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Using complex analysis we see that f ( z ) = 1 ( z 2 + 4 ) 2 \displaystyle f(z)=\frac{1}{(z^2+4)^2} has double poles at z = ± 2 i z=\pm 2i . Since integrating around the upper half plane the pole z = 2 i z=2i only comes into consideration so that,

Res(2i) = lim z 2 i d d z π cot ( π z ) ( z + 2 i ) 2 = 1 32 ( π coth ( 2 π ) + 2 π 2 ( csch ( 2 π ) ) 2 ) \displaystyle \text{Res(2i) } = \lim_{z\to 2i} \frac{d}{dz} \frac{\pi \cot (\pi z)}{(z+2i)^2} = -\frac{1}{32}(\pi\coth(2\pi)+2\pi^2 (\text{csch} (2\pi))^2)

We deduce directly from summation lemma that : n = 1 ( n 2 + 2 2 ) 2 = 1 32 ( π coth ( 2 π ) + 2 π 2 ( csch ( 2 π ) ) 2 ) \displaystyle \sum_{n=-\infty}^{\infty} \frac{1}{(n^2+2^2)^2} = \frac{1}{32}(\pi\coth(2\pi)+2\pi^2 (\text{csch}(2\pi))^2)

Then simply considering it symmetric over the point 0 0 the summation is reduced to,

n = 1 1 ( n 2 + 4 ) 2 = 1 32 ( 1 + π coth ( 2 π ) + 2 π 2 ( csch ( 2 π ) ) 2 ) \displaystyle \sum_{n=1}^{\infty} \frac{1}{(n^2+4)^2} = \frac{1}{32}(-1+\pi\coth(2\pi)+2\pi^2 (\text{csch}(2\pi))^2)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...