Summation is inequal

Algebra Level 4

r = 1 n 4 r + 1 ( 4 r 1 ) 2 ( 4 r + 3 ) 2 > 1 75 \large \sum _{ r=1 }^{ n }{ \frac { 4r+1 }{ { ( 4r - 1 ) }^{ 2 }{ ( 4r + 3 ) }^{ 2 } } > \frac { 1 }{ 75 } }

Find the minimum possible value of natural number n n such that the inequality above is fulfilled.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Firstly to do, we simplify the sum so we can do multiply and dividing easier r = 1 n 4 r + 1 ( 4 r 1 ) 2 ( 4 r + 3 ) 2 = 1 8 ( r = 1 n 1 ( 4 r 1 ) 2 1 ( 4 r + 3 ) 2 ) = 1 8 ( 1 9 1 ( 4 n + 3 ) 2 ) By using Telescoping Series \begin{aligned} \large \sum_{r=1}^{n} \frac{4r+1}{(4r-1)^2 (4r+3)^2} & \large = \frac{1}{8} {\left( \sum_{r=1}^{n} \frac{1}{(4r-1)^2} - \frac{1}{(4r+3)^2} \right)} \\ & \large = \frac{1}{8} {\left(\frac{1}{9} - \frac{1}{(4n+3)^2}\right)} & \small \color{#3D99F6}{\text{By using Telescoping Series}}\\ \end{aligned}

So, now that we have simplify the sum, we can go back to the inequality

1 8 ( 1 9 1 ( 4 n + 3 ) 2 ) > 1 75 1 9 1 ( 4 n + 3 ) 2 > 8 75 225 > ( 4 n + 3 ) 2 ± 15 > 4 n + 3 n > 3 Note that 0 > n is not acceptable \begin{aligned} \large \frac{1}{8} {\left(\frac{1}{9} - \frac{1}{(4n+3)^2}\right)} & \large > \frac{1}{75} \\ \large \frac{1}{9} - \frac{1}{(4n+3)^2} & \large > \frac{8}{75} \\ \large 225 & \large > (4n+3)^2 \\ \large \pm 15 & > \large 4n + 3 \\ \large n & \large > 3 & \small \color{#D61F06}{\text{Note that }\ 0 > n\ \text{is not acceptable} }\\ \end{aligned}

Therefore, the minimal value for n n is 4 \color{#D61F06}{\boxed{4}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...