Summation of a Series!

Algebra Level 5

S = k = 1 2006 ( 1 ) k k 2 3 ( k + 1 ) ! \large{ S = \sum_{k=1}^{2006} (-1)^k \dfrac{k^2 - 3}{(k+1)!}}

If ( S 1 ) (S-1) can be represented as A B ! \dfrac{A}{B!} where A , B A,B are positive integers each less than 10,000, then find the value of A + B A+B .


The answer is 4012.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

敬全 钟
Dec 10, 2015

Before we start to tackle the sum, let's focus on the expression that we are going to sum. Notice that k 2 3 ( k + 1 ) ! = k 2 + 2 k + 1 2 k 4 ( k + 1 ) ! = 1 ( k 1 ) ! 1 k ! 2 ( k + 1 ) ! \begin{aligned} \frac{k^2-3}{(k+1)!}&=&\frac {k^2+2k+1-2k-4}{(k+1)!}\\ &=&\frac {1}{(k-1)!}-\frac{1}{k!}-\frac {2}{(k+1)!} \end{aligned} We can now rewrite the summation as S = k = 1 2006 ( 1 ) k k 2 3 ( k + 1 ) ! = k = 1 2006 ( 1 ) k 1 ( k 1 ) ! k = 1 2006 ( 1 ) k 1 k ! k = 1 2006 ( 1 ) k 2 ( k + 1 ) ! = 1 / 0 ! + 1 / 1 ! 1 / 2 ! + 1 / 3 ! 1 / 4 + . . . + 1 / 2005 ! + 1 / 1 ! 1 / 2 ! + 1 / 3 ! 1 / 4 ! + . . . + 1 / 2005 ! 1 / 2006 ! + 2 / 2 ! 2 / 3 ! + 2 / 4 ! . . . 2 / 2005 ! + 2 / 2006 ! 2 / 2007 ! = 1 + 1 / 2006 ! 2 / 2007 ! \begin{aligned} S&=&\sum^{2006}_{k=1}(-1)^k\frac{k^2-3}{(k+1)!}\\&=&\sum^{2006}_{k=1}(-1)^k\frac {1}{(k-1)!}-\sum^{2006}_{k=1}(-1)^k\frac {1}{k!}-\sum^{2006}_{k=1}(-1)^k\frac {2}{(k+1)!}\\&=&-1/0!+1/1!-1/2!+1/3!-1/4+...+1/2005!\\&&+1/1!-1/2!+1/3!-1/4!+...+1/2005!-1/2006!\\&&+2/2!-2/3!+2/4!-...-2/2005!+2/2006!-2/2007!\\&=&1+1/2006!-2/2007! \end{aligned} Therefore, S 1 = 1 / 2006 ! 1 / 2007 ! = 2005 / 2007 ! S-1=1/2006!-1/2007!=2005/2007! , which gives us the final answer as A + B = 2005 + 2007 = 4012. A+B=2005+2007=4012.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...