Summation of Combinations

Algebra Level 4

Consider the multiplication of any two distinct integers chosen from 1 to 100 inclusive. Define set S S denote the set which contains all such numbers (not necessarily distinct).

What is the sum of all the numbers in set S S ?

Details and Assumptions :

  • Order is irrelevant, ( 1 , 4 ) (1,4) and ( 4 , 1 ) (4,1) count as 1 1 combination. Also, the integers chosen within a pair have to be unequal.

  • You might want to use a calculator as the calculation is large.


The answer is 12582075.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Efren Medallo
Jun 11, 2015

If we take the hint for those pairs from 1 1 to 4 4 ,

The total sum of possible pairs could be enumerated, that is,

1 × 2 1 \times 2

1 × 3 1 \times 3

1 × 4 1 \times 4

2 × 3 2 \times 3

2 × 4 2 \times 4

3 × 4 3 \times 4

We could simplify this to

1 × ( 2 + 3 + 4 ) 1 \times ( 2 + 3 + 4)

2 × ( 3 + 4 ) 2 \times (3+ 4)

3 × 4 3 \times 4 .

In a similar way, if we have 10 numbers to choose from, we can simplify the sum to be

1 × ( 2 + 3 + . . . + 10 ) 1 \times ( 2 + 3 + ... + 10)

2 × ( 3 + 4 + . . . + 10 ) 2 \times (3+ 4 + ... + 10)

3 × ( 4 + 5 + . . . + 10 ) 3 \times (4 + 5 + ...+ 10)

...

8 × ( 9 + 10 ) 8 \times (9+10)

9 × 10 9 \times 10 .

Thus, for an integer n n , the possible combinations would be

k = 1 n 1 ( k j = k + 1 n j ) \large \sum_{k=1}^{n-1}(k \sum_{j=k+1}^{n} j)

k = 1 n 1 k ( n k 2 ( n + k + 1 ) ) \large \sum_{k=1}^{n-1}k (\frac{n-k}{2}(n+k+1))

k = 1 n 1 k ( n 2 k 2 + n k 2 ) \large \sum_{k=1}^{n-1}k (\frac{n^{2}-k^{2}+n-k}{2})

k = 1 n 1 ( n 2 k k 3 + n k k 2 ) \large \sum_{k=1}^{n-1} (\frac{n^{2}k-k^{3}+nk-k}{2})

1 2 k = 1 n 1 ( k ( n 2 + n ) k 2 k 3 ) \large \frac {1}{2} \sum_{k=1}^{n-1} (k(n^{2}+n)-k^{2}-k^{3})

Using the formula for summation of consecutive integers, squares, and cubes, we simplify this to

1 2 ( ( n 2 + n ) ( n 2 n ) 2 ( n 1 ) ( n ) ( 2 n 1 ) 6 ( n 1 ) 2 ( n ) 2 4 ) \large \frac {1}{2} (\frac{(n^2+n)(n^2-n)}{2}-\frac{(n-1)(n)(2n-1)}{6}-\frac{(n-1)^{2}(n)^{2}}{4})

Now, substituting n = 100 n=100 , we get 12582075 . \large \boxed {12582075}.

Moderator note:

There's an alternative approach that can simplify the work by a lot.

Hint: Consider the algebraic expansion of ( a 1 + a 2 + + a n ) 2 (a_1 + a_2 + \ldots + a_n)^2 . Do you see the resemblance if I substitute a 1 = 1 , a 2 = 2 , a n = 100 a_1 = 1, a_2 = 2, \ldots a_n = 100 ?

Bonus question : Can you solve the question if the problem statements begins with "Consider the square of the multiplication of.." instead?

Laurent Shorts
Jan 13, 2017
1·1 1·2 ... 1·99 1·100
2·1 2·2 ... 2·99 2·100
3·1 3·2 ... 3·99 3·100
\vdots \vdots ... \vdots \vdots
100·1 100·2 ... 99·100 100·100

We want the sum of the bold products, which lie under the diagonal.

Let's sum everything, subtract the sum of the diagonal and divide by 2.

The whole sum is ( 1 + 2 + + 100 ) ( 1 + 2 + + 100 ) = 505 0 2 (1+2+\cdots+100)·(1+2+\cdots+100)=5050^2 .

The sum of the diagonal is 1 2 + 2 2 + + 10 0 2 = 33 8 350 1^2+2^2+\cdots+100^2=338'350 .

Answer is then ( i = 1 100 i ) 2 i = 1 100 i 2 2 = 505 0 2 33 8 350 2 = 1 2 58 2 075 \dfrac{\Big(\sum^{100}_{i=1}i\Big)^2-\sum^{100}_{i=1}i^2}{2}=\dfrac{5050^2-338'350}{2}=\boxed{12'582'075} .


I used the well known formulas:

i = 1 n i = n ( n + 1 ) 2 \sum^n_{i=1}i\,=\,\dfrac{n(n+1)}{2} and i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum^n_{i=1}i^2\,=\,\dfrac{n(n+1)(2n+1)}{6}

Quince Pan
Jun 12, 2015

First, we establish the set of integers from 1 to 100:

A = { n n Z 1 n 100 } = { 1 , 2 , 3 , 4 , 5 , 6 , . . . , 98 , 99 , 100 } A=\left\{ n|n\in { Z }\wedge 1\le n\le 100 \right\} =\{ 1,2,3,4,5,6,...,98,99,100\}

Then, we find the unique combinations by going down the set.

Starting off with 1 1 , we go down the set finding ( 1 , 2 ) \left( 1,2 \right) , ( 1 , 3 ) \left( 1,3 \right) , ( 1 , 4 ) \left( 1,4 \right) , ( 1 , 5 ) \left( 1,5 \right) , and so on.

There are 99 of these combinations based on 1 1 , as ( 1 , 1 ) \left( 1,1 \right) is rejected.

The two numbers in each combination above are multiplied together and all the 99 products are added to give:

1 ( 2 ) + 1 ( 3 ) + 1 ( 4 ) + . . . + 1 ( 99 ) + 1 ( 100 ) = 1 ( 2 + 3 + 4 + . . . + 99 + 100 ) = 1 [ ( 1 + 2 + 3 + 4 + . . . + 99 + 100 ) ( 1 ) ] = 1 ( 100 × 101 2 1 × 2 2 ) = 1 ( 5050 1 × 2 2 ) 1(2)+1(3)+1(4)+...+1(99)+1(100)\\ =1(2+3+4+...+99+100)\\ =1\left[ (1+2+3+4+...+99+100)-(1) \right] \\ =1(\frac { 100\times 101 }{ 2 } -\frac { 1\times 2 }{ 2 } )\\ =1(5050-\frac { 1\times 2 }{ 2 } )

Then we move on to 2 2 , finding ( 2 , 3 ) \left( 2,3 \right) , ( 2 , 4 ) \left( 2,4 \right) , ( 2 , 5 ) \left( 2,5 \right) , ( 2 , 6 ) \left( 2,6 \right) , and so on, as we move down the set.

There 98 such combinations based on 2 2 , because ( 2 , 1 ) \left( 2,1 \right) is already counted for as ( 1 , 2 ) \left( 1,2 \right) , and ( 2 , 2 ) \left( 2,2 \right) is rejected.

Similarly, the two numbers in each combination above are multiplied together and all the 98 products are added to give:

2 ( 3 ) + 2 ( 4 ) + 2 ( 5 ) + . . . + 2 ( 99 ) + 2 ( 100 ) = 2 ( 3 + 4 + 5 + . . . + 99 + 100 ) = 2 [ ( 1 + 2 + 3 + 4 + . . . + 99 + 100 ) ( 1 + 2 ) ] = 2 ( 100 × 101 2 2 × 3 2 ) = 2 ( 5050 2 × 3 2 ) 2(3)+2(4)+2(5)+...+2(99)+2(100)\\ =2(3+4+5+...+99+100)\\ =2[(1+2+3+4+...+99+100)-(1+2)]\\ =2(\frac { 100\times 101 }{ 2 } -\frac { 2\times 3 }{ 2 } )\\ =2(5050-\frac { 2\times 3 }{ 2 } )

There are 99 such "sums of products" as there are "sums of products" based on 1 1 through 99 99 , but there is no "sum of products" based on 100 100 .

We can now generalise the "sum of products" for any element n in the set A:

n [ 5050 n ( n + 1 ) 2 ] = n [ 5050 n 2 + n 2 ] = n [ n 2 + n 10100 2 ] = n 3 + n 2 10100 n 2 n\left[ 5050-\frac { n\left( n+1 \right) }{ 2 } \right] \\ =n\left[ 5050-\frac { { n }^{ 2 }+n }{ 2 } \right] \\ =n\left[ -\frac { { n }^{ 2 }+n-10100 }{ 2 } \right] \\ =-\frac { { n }^{ 3 }+{ n }^{ 2 }-10100n }{ 2 }

Finally, we find the sum of all 99 "sums of products":

n = 1 99 n 3 + n 2 10100 n 2 = 12582075 \sum _{ n=1 }^{ 99 }{ -\frac { { n }^{ 3 }+{ n }^{ 2 }-10100n }{ 2 } } =\boxed { 12582075 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...