Summation of functions

Algebra Level 3

If

f ( n ) = 4 n + 4 n 2 1 2 n + 1 + 2 n 1 \large f (n) =\frac {4n+\sqrt {4n^2-1}}{\sqrt {2n+1} +\sqrt {2n-1}}

Find the value of f ( 1 ) + f ( 2 ) + f ( 3 ) + + f ( 38 ) + f ( 39 ) + f ( 40 ) f\left( 1 \right)+f\left( 2 \right)+f\left( 3 \right)+\cdots+f\left( 38 \right)+f\left( 39 \right)+f\left( 40 \right)


The answer is 364.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Substituting 2 n + 1 = a \sqrt { 2n+1 }=a and 2 n 1 = b \sqrt { 2n-1 }=b , we have the following property:

2 n + 1 2 n 1 = 4 n 2 1 = a b \sqrt { 2n+1 }\cdot \sqrt { 2n-1 } =\sqrt { 4{ n }^{ 2 }-1 }=ab

( 2 n + 1 ) 2 + ( 2 n 1 ) 2 = 4 n = a 2 + b 2 (\sqrt { 2n+1 })^2+(\sqrt { 2n-1 })^2=4n=a^2+b^2 . Our function becomes:

f ( n ) = a 2 + b 2 + a b a + b f\left( n \right) =\frac{a^2+b^2+ab}{a+b}

Multiplying by a b a b \frac{a-b}{a-b} :

f ( n ) = a 2 + b 2 + a b a + b a b a b = a 3 b 3 a 2 b 2 f\left( n \right) =\frac{a^2+b^2+ab}{a+b}\cdot \frac{a-b}{a-b} = \frac{a^3-b^3}{a^2-b^2}

Substituting back the values of a a and b b :

f ( n ) = ( 2 n + 1 ) 3 ( 2 n 1 ) 3 2 n + 1 ) 2 ( 2 n 1 ) 2 = ( 2 n + 1 ) 3 ( 2 n 1 ) 3 2 n + 1 2 n + 1 = ( 2 n + 1 ) 3 ( 2 n 1 ) 3 2 f\left( n \right) =\frac{(\sqrt { 2n+1 })^3-(\sqrt { 2n-1 })^3}{\sqrt { 2n+1 })^2-(\sqrt { 2n-1 })^2}=\frac{(\sqrt { 2n+1 })^3-(\sqrt { 2n-1 })^3}{2n+1-2n+1 }=\frac{(\sqrt { 2n+1 })^3-(\sqrt { 2n-1 })^3}{2 }

The sum f ( 1 ) + f ( 2 ) + f ( 3 ) + . . . + f ( 38 ) + f ( 39 ) + f ( 40 ) f\left( 1 \right)+f\left( 2 \right)+f\left( 3 \right)+...+f\left( 38 \right)+f\left( 39 \right)+f\left( 40 \right) becomes:

( 3 ) 3 ( 1 ) 3 2 + ( 5 ) 3 ( 3 ) 3 2 + ( 7 ) 3 ( 5 ) 3 2 + . . . + ( 77 ) 3 ( 75 ) 3 2 + ( 79 ) 3 ( 77 ) 3 2 + ( 81 ) 3 ( 79 ) 3 2 \displaystyle{\frac{(\sqrt { 3 })^3-(\sqrt { 1 })^3}{2 }+\frac{(\sqrt { 5 })^3-(\sqrt { 3 })^3}{2 }+\frac{(\sqrt { 7 })^3-(\sqrt { 5 })^3}{2 }+...+\frac{(\sqrt { 77 })^3-(\sqrt { 75 })^3}{2 }+\frac{(\sqrt { 79 })^3-(\sqrt { 77 })^3}{2 }+\frac{(\sqrt { 81 })^3-(\sqrt { 79 })^3}{2 }}

Canceling equivalent terms we will finish with ( 1 ) 3 + ( 81 ) 3 2 = ( 1 ) 3 + ( 9 ) 3 2 = 1 + 729 2 = 364 \frac{-(\sqrt { 1 })^3+(\sqrt { 81 })^3}{2 }=\frac{-(1)^3+(9)^3}{2 }=\frac{-1+729}{2 }=\boxed{364}

Chew-Seong Cheong
Sep 24, 2017

S = f ( 1 ) + f ( 2 ) + f ( 3 ) + + f ( 40 ) = n = 1 40 f ( x ) = n = 1 40 4 n + 4 n 2 1 2 n 1 + 2 n + 1 = n = 1 40 ( 2 n + 1 ) + 2 ( 2 n + 1 ) ( 2 n 1 ) + ( 2 n 1 ) ( 2 n + 1 ) ( 2 n 1 ) 2 n + 1 + 2 n 1 = n = 1 40 ( 2 n + 1 + 2 n 1 ) 2 ( 2 n + 1 ) ( 2 n 1 ) 2 n + 1 + 2 n 1 = n = 1 40 ( 2 n + 1 + 2 n 1 ( 2 n + 1 ) ( 2 n 1 ) ( 2 n + 1 2 n 1 ) ( 2 n + 1 + 2 n 1 ) ( 2 n + 1 2 n 1 ) ) = n = 1 40 ( 2 n + 1 + 2 n 1 ( 2 n + 1 ) 2 n 1 ( 2 n 1 ) 2 n + 1 ) 2 n + 1 2 n + 1 ) = n = 1 40 ( 2 n + 1 + 2 n 1 ( 2 n + 1 ) 2 n 1 ( 2 n 1 ) 2 n + 1 ) 2 ) = n = 1 40 ( 2 n + 1 + 2 n 1 ( 2 n + 1 2 ) 2 n 1 + ( 2 n 1 2 ) 2 n + 1 ) = n = 1 40 ( ( 2 n + 1 ) 3 2 ( 2 n 1 ) 3 2 ) = ( 2 ( 1 ) 1 ) 3 2 + ( 2 ( 40 ) 1 ) 3 2 = 1 2 + 729 2 = 364 \begin{aligned} S & = f(1) + f(2) + f(3) + \cdots + f(40) \\ & = \sum_{n=1}^{40} f(x) \\ & = \sum_{n=1}^{40} \frac {4n+\sqrt{4n^2-1}}{\sqrt{2n-1}+\sqrt{2n+1}} \\ & = \sum_{n=1}^{40} \frac {(2n+1)+2\sqrt{(2n+1)(2n-1)} +(2n-1) -\sqrt{(2n+1)(2n-1)}}{\sqrt{2n+1}+\sqrt{2n-1}} \\ & = \sum_{n=1}^{40} \frac {(\sqrt{2n+1}+\sqrt{2n-1})^2 -\sqrt{(2n+1)(2n-1)}}{\sqrt{2n+1}+\sqrt{2n-1}} \\ & = \sum_{n=1}^{40} \left( \sqrt{2n+1}+\sqrt{2n-1} - \frac {\sqrt{(2n+1)(2n-1)}(\sqrt{2n+1}-\sqrt{2n-1})}{(\sqrt{2n+1}+\sqrt{2n-1})(\sqrt{2n+1}-\sqrt{2n-1})} \right) \\ & = \sum_{n=1}^{40} \left( \sqrt{2n+1}+\sqrt{2n-1} - \frac {(2n+1)\sqrt{2n-1}-(2n-1)\sqrt{2n+1})}{2n+1-2n+1} \right) \\ & = \sum_{n=1}^{40} \left( \sqrt{2n+1}+\sqrt{2n-1} - \frac {(2n+1)\sqrt{2n-1}-(2n-1)\sqrt{2n+1})}2 \right) \\ & = \sum_{n=1}^{40} \left( \sqrt{2n+1}+\sqrt{2n-1} - \left(\frac {2n+1}2 \right) \sqrt{2n-1} + \left(\frac {2n-1}2 \right) \sqrt{2n+1} \right) \\ & = \sum_{n=1}^{40} \left( \frac {\left(\sqrt{2n+1}\right)^3}2 - \frac {\left(\sqrt{2n-1}\right)^3}2 \right) \\ & = - \frac {\left(\sqrt{2(1)-1}\right)^3}2 + \frac {\left(\sqrt{2(40)-1}\right)^3}2 = - \frac 12 + \frac {729}2 = \boxed{364} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...