Summation of Integrals Mashup!!

Calculus Level 4

L e t I n = 0 π / 2 x n cos x d x , w h e r e n i s a n o n n e g a t i v e i n t e g e r . T h e n : n = 2 ( I n n ! + I n 2 ( n 2 ) ! ) e q u a l s ? ? Let\quad { I }_{ n }=\quad\displaystyle \int _{ 0 }^{ \pi /2 }{ { x }^{ n }\cos { x } dx,\quad where\quad n\quad is\quad a\quad non-negative\quad integer. } \\ Then:\quad \quad \displaystyle\sum _{ n=2 }^{ \infty }{ \left( \frac { { I }_{ n } }{ n! } +\frac { { I }_{ n-2 } }{ (n-2)! } \right) } equals??
Also Try: h e r e \href{https://brilliant.org/community-problem/integrals-of-the-years/?group=mJXtqmVrO6YT&ref_id=444794}{here}


The answer is 2.239.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The reduction formula can be easily derived for this integral which is

I n = ( π 2 ) n n ( n 1 ) I n 2 \large I_{n}=(\frac{\pi}{2})^{n} - n(n-1)I_{n-2}

So dividing by n ! n! and rearranging we have

I n n ! + I n 2 ( n 2 ) ! = ( π 2 ) n n ! \large \frac{I_{n}}{n!}+\frac{I_{n-2}}{(n-2)!} =\frac{(\frac{\pi}{2})^{n}}{n!}

So using Maclaurin's expansion for e x e^x we have

e x = r = 0 x r r ! \large e^x=\sum_{r=0}^{\infty} \frac{x^r}{r!}

So putting x = π 2 \large x=\frac{\pi}{2} we have :-

r = 0 ( π 2 ) r r ! = e π 2 \large \sum_{r=0}^{\infty} \frac{(\frac{\pi}{2})^{r}}{r!} = e^{\frac{\pi}{2}}

So r = 2 ( π 2 ) r r ! = e π 2 1 π 2 \large \displaystyle\sum_{r=2}^{\infty} \frac{(\frac{\pi}{2})^{r}}{r!} = e^{\frac{\pi}{2}}-1-\frac{\pi}{2}

So our answer is

e π 2 1 π 2 \large \displaystyle e^{\frac{\pi}{2}}-1-\frac{\pi}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...