For a k = ∫ 0 2 π sin 2 x ( 1 − sin x ) 2 k − 1 d x , where k ∈ N , k = 3 ∑ ∞ ( k + 1 ) ( a k − a k + 1 ) can be expressed as b a , where a and b are coprime positive integers. Find a b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
but dt=- cos x dx so there should be an extra minus sign
Log in to reply
note: the limits for t were 1 to 0, and there was (-dt), but i reversed the limits and cancelled the - sign.
Similar solution with @jatin yadav 's
a k = ∫ 0 1 sin 2 x ( 1 − sin x ) 2 k − 1 d x = ∫ 0 1 2 sin x cos x ( 1 − sin x ) 2 k − 1 d x = 2 ∫ 0 1 u ( 1 − u ) 2 k − 1 d u = 2 ∫ 0 1 ( 1 − u ) u 2 k − 1 d u = 2 ∫ 0 1 ( u 2 k − 1 − u 2 k + 1 ) d u = 2 [ k + 1 2 u 2 k + 1 − k + 3 2 u 2 k + 3 ] 0 1 = 4 ( k + 1 1 − k + 3 1 ) Let u = sin x ⟹ d u = cos x d x By ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
Now consider,
S = k = 3 ∑ ∞ ( k + 1 ) ( a k − a k + 1 ) = 4 a 3 − 4 a 4 + 5 a 4 − 5 a 5 + 6 a 5 − 6 a 6 + ⋯ = 4 a 3 + a 4 + a 5 + a 6 + ⋯ = 3 a 3 + k = 3 ∑ ∞ a k = 1 2 ( 4 1 − 6 1 ) + 4 k = 3 ∑ ∞ ( k + 1 1 − k + 3 1 ) = 3 − 2 + 4 ( 4 1 + 5 1 ) = 5 1 4
Therefore, a b = 1 4 × 5 = 7 0 .
Problem Loading...
Note Loading...
Set Loading...
a k = 2 ∫ 0 2 π sin x ( 1 − sin x ) 2 k − 1 cos x dx
Substituting 1 − sin x = t yields
a k = 2 ∫ 0 1 t 2 k − 1 ( 1 − t ) dt
= 2 ( ∫ 0 1 t 2 k − 1 dt + ∫ 0 1 t 2 t + 1 dt )
= 4 ( k + 1 1 − k + 3 1 )
Now,
k = 3 ∑ ∞ ( k + 1 ) ( a k − a k + 1 )
= 4 k = 3 ∑ ∞ ( k + 1 k + 1 − k + 3 k + 1 − k + 2 k + 1 + k + 4 k + 1 )
= 4 k = 3 ∑ ∞ ( 1 − ( 1 − k + 3 2 ) − ( 1 − k + 2 1 ) + ( 1 − k + 4 3 ) )
= 4 ( k = 3 ∑ ∞ ( k + 2 1 − k + 3 1 ) + 3 k = 3 ∑ ∞ ( k + 3 1 − k + 4 1 ) )
= 4 ( 5 1 + 3 6 1 )
= 5 1 4