summation of integration

Calculus Level 5

f ( m ) = 1 1 1 x 2 1 + m x d x \large f(m) = \int_{-1}^{1}\frac{\sqrt{1-x^2}}{\sqrt{1+m} - x}dx

Let f ( m ) f(m) be defined as above and m = 0 99 f ( m ) = k π \displaystyle \sum_{m=0}^{99} f(m) = k \pi . Find k k

20 100 0 10

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Nov 5, 2017

We have f ( m ) = 1 1 1 x 2 1 + m x d x = 1 1 1 x 2 ( 1 + m + x ) 1 + m x 2 d x = 1 + m 1 1 1 x 2 1 + m x 2 d x = m + 1 1 2 π 1 2 π cos 2 θ m + cos 2 θ d θ = π m + 1 m m + 1 1 2 π 1 2 π d θ m + cos 2 θ = π m + 1 2 m m + 1 1 2 π 1 2 π d θ 2 m + 1 + cos 2 θ = π m + 1 m m + 1 π π d ϕ 2 m + 1 + cos ϕ = π m + 1 m m + 1 z = 1 2 z + 2 ( 2 m + 1 ) + z 1 d z i z = π m + 1 2 m m + 1 i z = 1 d z z 2 + 2 ( 2 m + 1 ) z + 1 = π m + 1 4 π m m + 1 R e s z = ( 2 m + 1 ) + 2 m ( m + 1 ) ( 1 z 2 + 2 ( 2 m + 1 ) z + 1 ) = π m + 1 4 π m m + 1 × 1 4 m ( m + 1 ) = π m + 1 π m \begin{aligned} f(m) & = \; \int_{-1}^1 \frac{\sqrt{1-x^2}}{\sqrt{1+m}-x}\,dx \; = \; \int_{-1}^1 \frac{\sqrt{1-x^2}(\sqrt{1+m} + x)}{1 + m - x^2}\,dx \; = \; \sqrt{1+m}\int_{-1}^1 \frac{\sqrt{1-x^2}}{1+m - x^2}\, dx \\ & = \; \sqrt{m+1}\int_{-\frac12\pi}^{\frac12\pi} \frac{\cos^2\theta}{m + \cos^2\theta}\,d\theta \; = \; \pi\sqrt{m+1} - m\sqrt{m+1}\int_{-\frac12\pi}^{\frac12\pi}\frac{d\theta}{m + \cos^2\theta} \\ & = \; \pi\sqrt{m+1} - 2m\sqrt{m+1}\int_{-\frac12\pi}^{\frac12\pi}\frac{d\theta}{2m + 1 + \cos2\theta} \; = \; \pi\sqrt{m+1} - m\sqrt{m+1}\int_{-\pi}^\pi\frac{d\phi}{2m+1 + \cos\phi} \\ & = \; \pi\sqrt{m+1} - m\sqrt{m+1}\int_{|z|=1} \frac{2}{z + 2(2m+1) + z^{-1}} \, \frac{dz}{iz} \; = \; \pi\sqrt{m+1} - \frac{2m\sqrt{m+1}}{i}\int_{|z|=1}\frac{dz}{z^2 + 2(2m+1)z + 1} \\ & = \; \pi\sqrt{m+1} - 4\pi m\sqrt{m+1}\,\mathrm{Res}_{z = -(2m+1) + 2\sqrt{m(m+1)}} \left(\frac{1}{z^2 + 2(2m+1)z + 1}\right) \; = \; \pi\sqrt{m+1} - 4\pi m \sqrt{m+1} \times \frac{1}{4\sqrt{m(m+1)}} \\ & = \; \pi\sqrt{m+1} - \pi\sqrt{m} \end{aligned} which means that m = 0 99 f ( m ) = π 100 π 0 = 10 π \sum_{m=0}^{99} f(m) \; = \; \pi\sqrt{100} - \pi\sqrt{0} \; = \; \boxed{10\pi}

Vijay Simha
Nov 3, 2017

When we integrate the first integral we get pi*(sqrt(m+1) - sqrt(m))

When we sum this using the summation from m=0 to 99, we get a Telescoping Sum which collapses to pi(sqrt(100) - sqrt(0)) = 10pi

@Vijay Simha , can you please elaborate your first step, I didn't got that.

Aman Joshi - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...