Summation of logarithm of divisors

Let a = 1 0 6 a=10^6 . Evaluate d a log 10 d \displaystyle \sum_{d|a} \log_{10} {d} .


The answer is 147.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alexander Shannon
May 29, 2020

d 1 0 6 log 10 d = d 1 2 6 , d 2 5 6 log 10 ( d 1 d 2 ) \sum_{d|10^6} \log_{10} d = \sum_{d_1|2^6,d_2|5^6} \log_{10} (d_1 \cdot d_2)

= d 1 2 6 , d 2 5 6 log 10 d 1 + log 10 d 2 = d 1 2 6 , d 2 5 6 log 10 d 1 + d 1 2 6 , d 2 5 6 log 10 d 2 =\sum_{d_1|2^6,d_2|5^6} \log_{10} d_1 + \log_{10} d_2 = \sum_{d_1|2^6,d_2|5^6} \log_{10} d_1 + \sum_{d_1|2^6,d_2|5^6}\log_{10} d_2

Note that 2 6 2^6 has 7 7 divisors.

7 t = 0 6 log 10 2 t + 7 t = 0 6 log 10 5 t 7 \cdot \sum_{t=0}^{6} \log_{10}2^t + 7 \cdot \sum_{t=0}^{6} \log_{10}5^t

7 ( 1 + + 6 ) log 10 2 + 7 ( 1 + + 6 ) log 10 5 = 7 21 ( log 10 2 + log 10 5 ) = 147 7 \cdot (1+\dots+6)\cdot \log_{10} 2 + 7 \cdot (1+\dots+6)\cdot \log_{10} 5 = 7 \cdot 21 \cdot (\log_{10} 2 +\log_{10} 5 ) = 147

Chew-Seong Cheong
May 22, 2020

1 0 6 = 2 6 5 6 10^6 = 2^6 5^6 has ( 6 + 1 ) ( 6 + 1 ) = 49 (6+1)(6+1)=49 divisors d d . Number the divisors from the smallest to the largest. That is d 1 = 1 , d 2 = 2 , d 3 = 4 , , d 49 = 1 0 6 d_1 = 1, d_2 = 2, d_3 = 4, \cdots, d_{49}=10^6 . Then

d a log 10 d = n = 1 49 log 10 d n = n = 1 24 log 10 d n + log 10 d 25 + n = 26 49 log 10 d n Note that d 49 = 1 0 6 d 1 , d 48 = 1 0 6 d 2 , = n = 1 24 log 10 d n + log 10 1 0 3 + n = 26 49 log 10 1 0 6 d 50 n = n = 1 24 log 10 d n + 3 + n = 1 24 log 10 1 0 6 d 1 = n = 1 24 ( log 10 d n + log 10 1 0 6 d 1 ) + 3 = 3 + n = 1 24 ( log 10 d n + log 10 1 0 6 log 10 d 1 ) = 3 + n = 1 24 6 = 3 + 24 ( 6 ) = 147 \begin{aligned} \sum_{d \mid a} \log_{10} d & = \sum_{n=1}^{49} \log_{10} d_n \\ & = \sum_{n=1}^{24} \log_{10} d_n + \log_{10} d_{25} + \blue{\sum_{n=26}^{49} \log_{10} d_n} & \small \blue{\text{Note that }d_{49} = \frac {10^6}{d_1}, d_{48} = \frac {10^6}{d_2}, \cdots} \\ & = \sum_{n=1}^{24} \log_{10} d_n + \log_{10} 10^3 + \blue{\sum_{n=26}^{49} \log_{10} \frac {10^6}{d_{50-n}}} \\ & = \sum_{n=1}^{24} \log_{10} d_n + 3 + \sum_{n=1}^{24} \log_{10} \frac {10^6}{d_1} \\ & = \sum_{n=1}^{24} \left(\log_{10} d_n + \log_{10} \frac {10^6}{d_1} \right) + 3 \\ & = 3 + \sum_{n=1}^{24} \left(\log_{10} d_n + \log_{10} 10^6 - \log_{10} d_1 \right) \\ & = 3 + \sum_{n=1}^{24} 6 = 3 + 24(6) = \boxed {147} \end{aligned}

Great explanation, especially cancelling of divisors!

Mahdi Raza - 1 year ago

Log in to reply

Thanks pal

Chew-Seong Cheong - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...