Summation of the Inverted Tangents

Geometry Level 3

Evaluate m = 1 tan 1 ( 8 m 16 m 4 32 m 2 + 5 ) . \large \sum_{m=1}^{\infty} \tan^{-1} \left(\frac{8m}{16m^4-32m^2+5}\right).

Remember that the range of the inverse tangent function is ( π 2 , π 2 ) ( - \frac{ \pi}{2} , \frac{ \pi }{2}) .

tan 1 ( 2 ) π 2 \tan^{-1}(2)-\frac{\pi}{2} π 4 + tan 1 ( 3 ) \frac{\pi}{4}+\tan^{-1}(3) π 2 tan 1 ( 2 ) \frac{\pi}{2} - \tan^{-1}(2) π 2 + tan 1 ( 2 ) \frac{\pi}{2}+\tan^{-1}(2)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

T h e s u m m a t i o n c a n b e w r i t t e n a s m = 1 tan 1 ( ( 4 m 2 2 + 4 m ) ( 4 m 2 2 4 m ) 1 + ( 4 m 2 2 + 4 m ) . ( 4 m 2 2 4 m ) ) N o w u s i n g t h e i d e n t i t y tan 1 ( x ) tan 1 ( y ) = tan 1 ( x y 1 + x y ) m = 1 [ tan 1 ( 4 m 2 2 + 4 m ) tan 1 ( 4 m 2 2 4 m ) ] = [ tan 1 ( 6 ) tan 1 ( 2 ) ] + [ tan 1 ( 32 ) tan 1 ( 6 ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l i m m tan 1 ( 4 m 2 2 4 m ) N o w o b s e r v e t h a t a l l t h e t e r m s e x c e p t t h e s e c o n d a n d t h e l a s t , a r e b e i n g c a n c e l l e d . T h e r e f o r e A n s w e r = tan 1 ( 2 ) π 2 The\quad summation\quad can\quad be\quad written\quad as\\ \\ \sum _{ m=1 }^{ \infty }{ \tan ^{ -1 }{ \left( \frac { (4{ m }^{ 2 }-2+4m)-(4{ m }^{ 2 }-2-4m) }{ 1+(4{ m }^{ 2 }-2+4m).(4{ m }^{ 2 }-2-4m) } \right) } } \\ \\ Now\quad using\quad the\quad identity\\ \tan ^{ -1 }{ (x) } -\tan ^{ -1 }{ (y) } =\tan ^{ -1 }{ \left( \frac { x-y }{ 1+xy } \right) } \\ \sum _{ m=1 }^{ \infty }{ \left[ \tan ^{ -1 }{ (4{ m }^{ 2 }-2+4m) } -\tan ^{ -1 }{ (4{ m }^{ 2 }-2-4m) } \right] } \\ =\quad [\tan ^{ -1 }{ (6) } -\tan ^{ -1 }{ (-2) } ]+[\tan ^{ -1 }{ (32) } -\tan ^{ -1 }{ (6) } ]\\ \quad \quad ................................-\underset { m\rightarrow \infty }{ lim } \tan ^{ -1 }{ (4{ m }^{ 2 }-2-4m) } \\ Now\quad observe\quad that\quad all\quad the\quad terms\quad except\quad the\quad \\ second\quad and\quad the\quad last\quad ,\quad are\quad being\quad cancelled.\\ Therefore\quad Answer\quad =\quad \boxed { \tan ^{ -1 }{ (2)-\frac { \pi }{ 2 } } }

Observation: The identity is false is 1+xy<0 (in m=1), the answer is correct, but need a little edition.

David Painequeo Santoro - 5 years, 1 month ago

how can there be a "last term" if this sequence is infinite? wouldn't that "last term" be canceled out with some term after that case you showed that this sequence telescopes.

Willia Chang - 4 years, 11 months ago

Sorry but the solution is completely wrong I think !

Anurag Pandey - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...