Evaluate m = 1 ∑ ∞ tan − 1 ( 1 6 m 4 − 3 2 m 2 + 5 8 m ) .
Remember that the range of the inverse tangent function is ( − 2 π , 2 π ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Observation: The identity is false is 1+xy<0 (in m=1), the answer is correct, but need a little edition.
how can there be a "last term" if this sequence is infinite? wouldn't that "last term" be canceled out with some term after that case you showed that this sequence telescopes.
Sorry but the solution is completely wrong I think !
Problem Loading...
Note Loading...
Set Loading...
T h e s u m m a t i o n c a n b e w r i t t e n a s ∑ m = 1 ∞ tan − 1 ( 1 + ( 4 m 2 − 2 + 4 m ) . ( 4 m 2 − 2 − 4 m ) ( 4 m 2 − 2 + 4 m ) − ( 4 m 2 − 2 − 4 m ) ) N o w u s i n g t h e i d e n t i t y tan − 1 ( x ) − tan − 1 ( y ) = tan − 1 ( 1 + x y x − y ) ∑ m = 1 ∞ [ tan − 1 ( 4 m 2 − 2 + 4 m ) − tan − 1 ( 4 m 2 − 2 − 4 m ) ] = [ tan − 1 ( 6 ) − tan − 1 ( − 2 ) ] + [ tan − 1 ( 3 2 ) − tan − 1 ( 6 ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − m → ∞ l im tan − 1 ( 4 m 2 − 2 − 4 m ) N o w o b s e r v e t h a t a l l t h e t e r m s e x c e p t t h e s e c o n d a n d t h e l a s t , a r e b e i n g c a n c e l l e d . T h e r e f o r e A n s w e r = tan − 1 ( 2 ) − 2 π