Summation

Algebra Level 4

1 1 × 2 × 8 + 1 2 × 3 × 9 + + 1 99 × 100 × 106 = ? \large{\frac { 1 }{ 1\times 2\times 8 } +\frac { 1 }{ 2\times 3\times 9 } +\ldots +\frac { 1 }{ 99\times 100\times 106 } = \ ?}


The answer is 0.1048.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 10, 2015

Let the expression by S S , then we have:

S = k = 1 99 1 k ( k + 1 ) ( k + 7 ) By partial fractions (see Note) = 1 42 k = 1 99 ( 6 k 7 k + 1 + 1 k + 7 ) = 1 42 k = 1 99 ( 6 k 6 k + 1 1 k + 1 + 1 k + 7 ) = 1 42 ( k = 1 99 6 k k = 1 99 6 k + 1 k = 1 99 1 k + 1 + k = 1 99 1 k + 7 ) = 1 42 ( 6 [ k = 1 99 1 k k = 2 100 1 k ] k = 2 100 1 k + k = 8 106 1 k ) = 1 42 ( 6 [ 1 1 1 100 ] 1 2 1 3 1 4 1 5 1 6 1 7 + 1 101 + 1 102 + 1 103 + 1 104 + 1 105 + 1 106 ) 0.105 \begin{aligned} S & = \sum_{k=1}^{99} \frac{1}{k(k+1)(k+7)} \quad \quad \small \color{#3D99F6}{\text{By partial fractions (see Note)}} \\ & = \frac{1}{42} \sum_{k=1}^{99} \left( \frac{6}{k} - \frac{7}{k+1} + \frac{1}{k+7} \right) \\ & = \frac{1}{42} \sum_{k=1}^{99} \left( \frac{6}{k} - \frac{6}{k+1} - \frac{1}{k+1} + \frac{1}{k+7} \right) \\ & = \frac{1}{42} \left( \sum_{k=1}^{99} \frac{6}{k} - \sum_{k=1}^{99} \frac{6}{k+1} - \sum_{k=1}^{99} \frac{1}{k+1} + \sum_{k=1}^{99} \frac{1}{k+7} \right) \\ & = \frac{1}{42} \left( 6 \left[ \sum_{k=1}^{99} \frac{1}{k} - \sum_{k=2}^{100} \frac{1}{k} \right] - \sum_{k=2}^{100} \frac{1}{k} + \sum_{k=8}^{106} \frac{1}{k} \right) \\ & = \frac{1}{42} \left( 6 \left[ \frac{1}{1} - \frac{1}{100} \right] - \frac{1}{2} - \frac{1}{3} - \frac{1}{4} - \frac{1}{5} - \frac{1}{6} - \frac{1}{7} + \frac{1}{101} + \frac{1}{102} + \frac{1}{103} + \frac{1}{104} + \frac{1}{105} + \frac{1}{106} \right) \\ & \approx \boxed{0.105} \end{aligned}


Partial Fractions

Assuming the following:

1 k ( k + 1 ) ( k + 7 ) = A k + B k + 1 + C k + 7 1 = A ( k + 1 ) ( k + 7 ) + B k ( k + 7 ) + C k ( k + 1 ) \begin{aligned} \frac 1{k(k+1)(k+7)} & = \frac Ak + \frac B{k+1} + \frac C{k+7} \\ \implies 1 & = A(k+1)(k+7) + Bk(k+7) + Ck(k+1) \end{aligned}

Putting { k = 0 7 A = 1 A = 1 7 k = 1 6 B = 1 B = 1 6 k = 7 42 C = 1 C = 1 42 \begin{cases} k = 0 & \implies 7A = 1 & \implies A = \dfrac 17 \\ k = -1 & \implies -6B = 1 & \implies B = -\dfrac 16 \\ k = -7 & \implies 42C = 1 & \implies C = \dfrac 1{42} \end{cases}

1 k ( k + 1 ) ( k + 7 ) = 1 42 ( 6 k 7 k + 1 + 1 k + 7 ) \begin{aligned} \implies \frac 1{k(k+1)(k+7)} & = \frac 1{42} \left(\frac 6k - \frac 7{k+1} + \frac 1{k+7}\right) \end{aligned}

Please help .How did you reach to second step directly, can you teach if any such method exist to resolve such expression.

Rakshit Joshi - 4 years, 8 months ago

Log in to reply

I have provided the explanation in the revised solution.

Chew-Seong Cheong - 4 years, 8 months ago
Jason Gomez
Oct 29, 2018

I used programming in Java, this was the script.

class Pattern

{

static void pattern()

{

double sum=0,i;

for(i=1;i<=99;i++)

{

sum+=1/(i (i+1) (i+7));

}

System.out.print(sum);

}

}

I am sorry ,I don't know how to use Latex

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...