( 2 4 + 4 1 ) ( 4 4 + 4 1 ) ( 6 4 + 4 1 ) ⋯ ( ( 2 n ) 4 + 4 1 ) ( 1 4 + 4 1 ) ( 3 4 + 4 1 ) ( 5 4 + 4 1 ) ⋯ ( ( 2 n − 1 ) 4 + 4 1 ) = a n 2 + b n + c 1
The equation above holds true for integers a , b and c . Find a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
P = n = 1 ∏ m ( ( 2 n ) 4 + 4 1 ( 2 n − 1 ) 4 + 4 1 ) P = n = 1 ∏ m ( 4 ( 2 n ) 4 + 1 4 ( 2 n − 1 ) 4 + 1 ) P = n = 1 ∏ m ( 4 b 4 + a 4 4 q 4 + p 4 ) where a = 1 , b = 2 n , p = 1 , q = 2 n − 1 and using Sophie German Identity for the expansion of a 4 + 4 b 4 p 4 + 4 q 4 = ( ( a + b ) 2 + b 2 ) ( ( a − b ) 2 + b 2 ) ) ( ( p + q ) 2 + q 2 ) ( ( p − q ) 2 + q 2 ) a 4 + 4 b 4 p 4 + 4 q 4 = ( ( 1 + 2 n ) 2 + ( 2 n ) 2 ) ( ( 1 − 2 n ) 2 + ( 2 n ) 2 ) ( ( 1 + 2 n − 1 ) 2 + ( 2 n − 1 ) 2 ) ( ( 1 − ( 2 n − 1 ) ) 2 + ( 2 n − 1 ) 2 ) a 4 + 4 b 4 p 4 + 4 q 4 = ( 1 + 2 n ) 2 + ( 2 n ) 2 ) ( ( 1 − 2 n ) 2 + ( 2 n ) 2 ) ( 2 n ) 2 + ( 2 n − 1 ) 2 ) ( ( 2 − 2 n ) 2 + ( 2 n − 1 ) 2 ) a 4 + 4 b 4 p 4 + 4 q 4 = ( 2 n + 1 ) 2 + ( 2 n ) 2 ( 2 − 2 n ) 2 + ( 2 n − 1 ) 2 = 4 n 2 + 4 n + 1 + 4 n 2 4 − 8 n + 4 n 2 + 4 n 2 − 4 n + 1 = 8 n 2 + 4 n + 1 8 n 2 − 1 2 n + 5 ∴ n = 1 ∏ m ( 2 n ) 4 + 1 ( 2 n − 1 ) 4 + 1 = n = 1 ∏ m 8 n 2 + 4 n + 1 8 n 2 − 1 2 n + 4 = 8 m 2 + 4 m + 1 1 Note n = 1 ∏ m 8 n 2 + 4 n + 1 8 n 2 − 1 2 n + 5 = 1 3 1 × 4 1 1 3 × 8 5 4 1 × ⋯ × 8 m 2 − 1 2 m + 5 × 8 m 2 + 4 m + 1 8 m 2 − 1 2 m + 5 shows that the above product is telescoping product.
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Sophie Germain Identity
Q = ∏ k = 1 n ( ( 2 k ) 4 + 4 1 ) ∏ k = 1 n ( ( 2 k − 1 ) 4 + 4 1 ) = ∏ k = 1 n ( 4 ( 2 k ) 4 + 1 ) ∏ k = 1 n ( 4 ( 2 k − 1 ) 4 + 1 ) = ∏ k = 1 n ( 8 k 2 + 4 k + 1 ) ( 8 k 2 − 4 k + 1 ) ∏ k = 1 n ( 8 k 2 − 4 k + 1 ) ( 8 k 2 − 1 2 k + 5 ) = ∏ k = 1 n ( 8 k 2 + 4 k + 1 ) ∏ k = 1 n ( 8 k 2 − 1 2 k + 5 ) = ∏ k = 1 n ( 8 k 2 + 4 k + 1 ) ( 8 ( 1 2 ) − 1 2 ( 1 ) + 5 ) k = 1 ∏ k = 2 n ( 8 k 2 − 1 2 k + 5 ) = ∏ k = 1 n ( 8 k 2 + 4 k + 1 ) ( 1 ) ∏ k = 1 n − 1 ( 8 ( k + 1 ) 2 − 1 2 ( k + 1 ) + 5 ) = ∏ k = 1 n ( 8 k 2 + 4 k + 1 ) ∏ k = 1 n − 1 ( 8 k 2 + 4 k + 1 ) = 8 n 2 + 4 n + 1 1 Multiply up and down by 4 n By Sophie Germain’s identity: a 4 + 4 b 4 = ( a 2 + 2 a b + 2 b 2 ) ( a 2 − 2 a b + 2 b 2 )
Therefore, a + b + c = 8 + 4 + 1 = 1 3 .