Fibonacci on fives

Calculus Level 4

S = 1 5 + 1 5 2 + 2 5 3 + 3 5 4 + 5 5 5 + 8 5 6 + S =\frac{1}{5} + \frac{1}{5^{2}} + \frac{2}{5^{3}} + \frac{3}{5^{4}} + \frac{5}{5^{5}} + \frac{8}{5^{6}} + \cdots

If S = A B S = \dfrac AB , where A A and B B are coprime positive integers, find the value of A + B A+B .

Clarification : 1 , 1 , 2 , 3 , 5 , 8 , 1,1,2,3,5,8,\ldots follows the Fibonacci Sequence .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Sam Lee
Sep 12, 2015

A Solution Using The generating function of the Fibonacci Sequence :

With X = 1 / 5

We Get S = 5 / 19

Then A = 5 & B = 19

Finally A + B = 24

@Sam Lee Thanks for the solution! I've converted it over. If you subscribe to this thread, you will receive updates when people comment on it.

Calvin Lin Staff - 5 years, 9 months ago

Log in to reply

thanks Calvin.

Sam Lee - 5 years, 9 months ago
Refaat M. Sayed
Sep 12, 2015

S = 1 5 + 1 5 2 + 2 5 3 + 3 5 4 + 5 5 5 + 8 5 6 + S =\frac{1}{5} + \frac{1}{5^{2}} + \frac{2}{5^{3}} + \frac{3}{5^{4}} + \frac{5}{5^{5}} + \frac{8}{5^{6}} + \cdots 5 S = 1 + 1 5 + 2 5 2 + 3 5 3 + 5 5 4 + 5S =1+\frac{1}{5} + \frac{2}{5^{2}} +\frac{3}{5^{3}} +\frac{5}{5^{4}} + \cdots 4 S = 1 + 1 5 2 + 1 5 3 + 2 5 4 + 3 5 5 + 4S=1+\frac{1}{5^{2}} +\frac{1}{5^{3}} +\frac{2}{5^{4}} +\frac{3}{5^{5}} +\cdots 4 S = 1 + 1 5 ( 1 5 + 1 5 2 + 2 5 3 + 3 5 4 + 5 5 5 + ) 4S= 1+\frac{1}{5} \left( \frac{1}{5} +\frac{1}{5^{2}} +\frac{2}{5^{3}} +\frac{3}{5^{4}} +\frac{5}{5^{5}} +\cdots \right) 4 S = 1 + S 5 4S=1+\frac{S}{5} So S = 5 19 S=\frac {5}{19} Now A + B = 24 A+B = \boxed {24}

Can you explain how 4s equals that? I must be missing something and it's bugging me that I can't see it.

Nate Thönnesen - 5 years, 9 months ago

Log in to reply

Never mind, saw it right after I posted.

Nate Thönnesen - 5 years, 9 months ago

Log in to reply

Can u explain it to me???

Vighnesh Raut - 5 years, 7 months ago
Akshat Sharda
Nov 4, 2015

S = 1 5 + 1 5 2 + 2 5 3 + 3 5 4 + 5 5 5 + S 5 = 1 5 2 + 1 5 3 + 2 5 4 + 3 5 5 + 5 5 6 + 4 S 5 = 1 5 + 1 5 3 + 1 5 4 + 2 5 5 + 3 5 6 + S 5 2 4 S 5 = 1 5 + S 5 2 19 S 25 = 1 5 S = 5 19 5 + 19 = 24 S =\frac{1}{5} + \frac{1}{5^{2}} + \frac{2}{5^{3}} + \frac{3} {5^{4}} + \frac{5}{5^{5}} + \ldots \infty \\ \frac{S}{5}=\frac{1}{5^{2}} + \frac{1}{5^{3}} + \frac{2}{5^{4}} + \frac{3} {5^{5}} + \frac{5}{5^{6}} + \ldots \infty \\ \frac{4S}{5}=\frac{1}{5}+\underbrace{\frac{1}{5^{3}}+\frac{1}{5^{4}}+\frac{2}{5^{5}}+\frac{3}{5^{6}}+\ldots \infty}_{\frac{S}{5^{2}}} \\ \Rightarrow \frac{4S}{5}=\frac{1}{5}+\frac{S}{5^{2}}\Rightarrow \frac{19S}{25}=\frac{1}{5}\Rightarrow S=\frac{5}{19} \\ \Rightarrow 5+19=\boxed{24}

Let S = 1 5 + 1 5 2 + 2 5 3 + 3 5 4 + . . . S = \frac{1}{5}+ \frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+... We note that denominators holds the following recurrence a n + a n + 1 = a n + 2 ; a 1 = a 2 = 1 a_n+a_{n+1}=a_{n+2}; a_1 = a_2 = 1 that is : S = 2 1 5 + 3 2 5 2 + 5 3 5 3 + 8 5 5 4 + . . . S = \frac{2-1}{5}+ \frac{3-2}{5^2}+\frac{5-3}{5^3}+\frac{8-5}{5^4}+... Spliting from positive to negative terms and rearranging the sum : S = ( 2 5 + 3 5 2 + 5 5 3 + 8 5 4 + . . . ) S = (\frac{2}{5}+ \frac{3}{5^2}+\frac{5}{5^3}+\frac{8}{5^4}+... ) - ( 1 5 + 2 5 2 + 3 5 3 + 5 5 4 + . . . ) (\frac{1}{5}+ \frac{2}{5^2}+\frac{3}{5^3}+\frac{5}{5^4}+... ) We observe that : S = ( 25 S 6 ) ( 5 S 1 ) S = (25S-6) - (5S-1) Finally : S = 5 19 S = \frac{5}{19}

But not too fast! ... First we need to decide if this sums converges, because calculating a value, really doesn't mean that series converges to that value and even doesn't mean that we can rearrange terms . We use ratio test and convergence ratio of fibonacci secuence for this purpose :

lim n a n + 1 a n 1 5 = φ 5 < 1 \lim_{n \to \infty} |\frac{a_{n+1}}{a_n} \frac{1}{5}| = \frac{ \varphi}{5} < 1 Therefore is absolutely convergent.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...